CA-IDMS®

Database Design
15.0

‘a

Computer Associates



This documentation and related computer software program (hereinafter referred to as the “Documentation”) is
for the end user's informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

THIS DOCUMENTATION MAY NOT BE COPIED, TRANSFERRED, REPRODUCED, DISCLOSED, OR
DUPLICATED, IN WHOLE OR IN PART, WITHOUT THE PRIOR WRITTEN CONSENT OF CA. THIS
DOCUMENTATION IS PROPRIETARY INFORMATION OF CA AND PROTECTED BY THE COPYRIGHT
LAWS OF THE UNITED STATES AND INTERNATIONAL TREATIES.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS
IS WITHOUT WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGE-
MENT. IN NO EVENT WILL CA BE LIABLE TO THE END USER OR ANY THIRD PARTY FOR ANY
LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION,
INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR
LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

THE USE OF ANY PRODUCT REFERENCED IN THIS DOCUMENTATION AND THIS DOCUMENTA-
TION IS GOVERNED BY THE END USER'S APPLICABLE LICENSE AGREEMENT.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights’ as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1)
and (2) or DFARS Section 252.227.7013(c)(2)(ii) or applicable successor provisions.

First Edition, December 2000

© 2000 Computer Associates International, Inc.

One Computer Associates Plaza, 1slandia, NY 11749
All rights reserved.

All trademarks, trade names, service marks, or logos referenced herein belong to their respective companies.



Contents

How to Use ThisManual . . ... ... .. ... ... ... .. ... .. .. .... iX
Chapter 1. General Guidelines . . . . . . .. .. ... ... ... ....... 1-1
L1 Overview . . . . 1-3
1.2 Designimplementation . . . . . . ... ... 1-4
Chapter 2. Introduction to Logical Design . . . . ... ... ... ....... 2-1
21 OVEIVIBW . . . 2-3
2.2 Determining theuser'sdataneeds . . . . . . . ... ... ... ... 2-5
2.3 Determining the corporation'sdataneeds . . . . ... .. .. ... ... ... 2-7
2.4 Overview of the logical designprocess . . . . . ... .. .. ... ... ... 2-8
Chapter 3. Analyzing the BusinessSystem . . . . ... ... ... ... .... 31
31 OVerview . ... 33
3.2 Step 1: Defining general business functions . . . . . ... ... L. 35
3.3 Step 2: Defining specific business functions . . . . . .. ... ... L. 3-6
34 Step 3: Ligting the dataelements . . . . . . .. ... 3-10
3.5 Step 4: ldentifying the businessrules . . . . . .. .. ... ... ... .. 313
3.6 Step 5: Reviewing theresultsof analysis . . . . .. ... ... ... ... .. 314
Chapter 4. Identifying Entities and Relationships . . . . .. ... ... ... 4-1
41 OVErVIeW . . . 4-3
4.2 ldentifying data entities . . . . . . ... 4-4
4.3 ldentifying relationships among entities . . . . . .. ... ... ... .... 4-8

4.3.1 Typesof datarelationships . . . . ... ... ... ... . ... ... 4-8

4.3.2 Genera guidelines for identifying relationships . . . . . .. ... .. 4-11
Chapter 5. Identifying Attributes . . . . . ... ... ... . ... ... .... 51
51 OVEIVIBW . . . . o 5-3
5.2 Establishing naming conventions for the attributes . . . . . . ... ... .. 5-4
5.3 ldentifying the attributes of each entity . . . . . ... ... ... .. ... .. 55

5.3.1 Grouping the attributes . . . . . . ... ... ... ... ... ... ... 5-6

5.3.2 Identifying uniquekeys . . . . . .. ... 5-8

5.3.3 Establishing primary keys . . . . . . ... ..o 59

5.3.4 ldentifying weak entities . . . . . ... ... L 511
5.4 Identifying the attributes for each relationshiptype . . . ... ... .. .. 5-12
5.5 Identifying attribute characteristics . . . . . .. ... ... ... ... ... 5-14
Chapter 6. NormalizingtheData . . ... ... ... . ... .......... 6-1
6.1 OVErVIEW . . . . . 6-3
6.2 Why normalizedata . . . . . ... ... ... ... 6-4
6.3 Norma formsof data . . . .. . ... ... .. ... ... 6-5

6.3.1 First normal form . . . .. ... ... 6-5

6.3.2 Second normal form . . ... 6-6

6.3.3 Third normal form . . . ... ... ... 6-7
6.4 How tonormaizedata . .. ... ... ... .. ... .. ... ... .. ... 6-9

6.4.1 Listing datain first norma form . . . ... ... ... 0L 6-9

Contents iii



6.4.2 Listing datain second normal form . . .. ... ... ... ... ...
6.4.3 Listing data in third norma form . . . .. ... ... ... ... ...
6.5 Normalized data for the Commonweather Corporation . . . . . .. .. ..

Chapter 7. Validating the Logical Design . . . . .. . ... ... .......
7L OVEIVIBW . . .

Chapter 8. Introduction to Physical Design . . . . .. ... ... .......
8.1 OVErview . . . . ..
8.2 Datastructurediagram . . . . . . ... ... ...
8.3 Steps in the physical database design process . . . . . . ... ... ... ..
8.4 Physical database structures . . . . ...
85 SQL and non-SQL definitions . . . . . . .. ... L

Chapter 9. Creating a Preliminary Data Structure Diagram . . . . . . . ..

9.1 Developing a data structure diagram . . . . . .. ... L

9.1.1 Representing entities . . . . . . .. ...

9.1.1.1 Representing relationships as entities . . . . . . ... ... ... ..

9.1.2 Representing relationships between entities . . . . . . .. ... ... ..

9.1.3 Estimating entity lengths . . . . . . . ... oo
9.2 Preliminary data structure diagram for Commonweather Corporation

Chapter 10. Identifying Application Performance Requirements . . . . . .
10.1 Overview . . . .
10.2 Establishing performance requirements for transactions . . . . . . .. ..
10.3 Prioritizing transactions . . . . . ... ...
10.4 Determining how often transactions will be executed . . . . . . . .. ..
10.5 Identifying access requirements . . . . . . .. ...
10.6 Determining the database entry point and access key for each transaction

10.7 Projecting growth patterns . . . . . . . . .. ...
10.8 Determining the number of entities in each relationship . . . . . . .. ..
10.9 Determining how often each entity will beaccessed . . . . . .. ... ..

Chapter 11. Determining How an Entity Should Be Stored . . . . . .. ..
111 Overview . . . .
11.2 Location modes . . . . . . . . ...
11.21 Randomization . . . .. ... ... ... ... ...
11.2.2 Clustering . . . . . . . . . ..

11.3 Guidelines for determining how an entity should be stored . . . . . . ..

11.3.1 Isthis entity both aparent and achild? . . . ... ... . ... ...

11.3.1.1 Isthere optimal relationship clustering for this entity? . . . . .
11.3.2 Isthis a parent entity but not a child entity? . . . . ... ... ...
11.3.3 Isthisachild entity but not a parent entity? . . . .. ... ... ..
11.3.4 Is generic retrieval required and is the entity relatively static?

11.4 Graphic conventions . . . . . ... ... ..
11.4.1 Conventions for specifying locationmode . . . .. ... .. ... ..
11.4.2 Conventions for representing indexes . . . . . .. .. .. ... ...

11.5 Location modes for entities in the Commonweather database . . . . . . .
11.5.1 Revised data structure diagram for the Commonweather Corporation

Chapter 12. Refining the DatabaseDesign . . . . . . . .. ... .. ... ..

iv CA-IDMS Database Design



12.1 Evauating the databasedesign . . . . . . ... ... ... .. ... ... . 12-3

12.2 Refinement options . . . . . . ... 12-4
12.3 Estimating I/Os for transactions . . . . . . .. ... .. ... ... 12-5
12.3.1 Sample exercise #1: Estimating I/Os for aretrieval transaction . . . 12-6
12.3.2 Sample exercise #2: Estimating 1/Os for an update transaction . . . 12-7
12.4 Eliminating unnecessary entities . . . . . . . .. ... L 12-9
12.4.1 Collapsing relationships . . . . . . . . .. . . ... . ... ... ... 12-9
12.4.2 Introducing redundancy . . . . ... ... .. L 12-10
12,5 Eliminating unnecessary relationships . . . . . . . . .. ... ... .... 12-12
126 Addingindexes . . . . . . .. ... 12-13
12.7 Refined data structure diagram for Commonwesther Corporation . . . . . 12-18
Chapter 13. Choosing Physical Tuning Options . . . . . ... ... ... .. 13-1
131 Overview . . . .o 13-3
13.2 Placement of entitiesinareas . . . . . .. ... ... L. 13-4
13.2.1 Segmentation of databases . . . . . . ... .. L 13-5
13.2.1.1 Segmenting by groups of entities . . . . . ... ... ... ... 13-5
13.2.1.2 Segmenting by logical key . . . ... ... ... ... ... 13-6
13.3 Data compression . . . . . ..o 13-8
13.4 Relationship tuning options . . . . .. ... 13-11
13.4.1 Linked and unlinked relationships . . . . .. ... ... ... .... 13-11
13.4.2 Linked relationship tuning options . . . . . . . ... ... ... ... 13-12
13421 Typeof linkage . . . ... ... ... .. ... ... ... 13-12
13.4.2.2 Sorted and unsorted relationships . . . . .. ... .. ... ... 13-15
135 Index key compression . . . . ... ... 13-17
13.6 Non-SQL tuning options . . . . . . . . . . ... ... 13-18
13.6.1 Multimember relationships . . . ... ... ... . L. 13-20
13.6.2 Direct locationmode . . . . . . ... ... 13-24
13.6.3 Variable-length entities . . . . . . .. ... ... ... .. .. ..., 13-25
13.6.4 Database procedures . . . . . . . ... 13-27
13.6.5 CALC duplicatesoption . . . . ... ... ... ... ... ...... 13-27
13.6.6 Reationship tuningoptions . . . . .. ... ... ... .. ... ... 13-28
13.6.6.1 Nonsorted order . . . ... ... ... .. .. .. .. . ..... 13-28
13.6.6.2 Additional sort options . . . . ... ... 13-30
13.6.6.3 Linkage . ... ... ... ... 13-32
13.6.6.4 Membershipoptions . . . ... ... ... .. ... ... . ... 13-33
13.6.6.5 Removing foreignkeys . . . . ... ... ... ... .. ... 13-36
13.6.7 Index tuning options . . . . . . . .. ... 13-36
13.6.7.1 Unlinked versus linked indexes . . . . . ... ... ... . ... 13-36
13.6.7.2 Additional sort options for indexes . . . . . ... .. ... ... 13-37
13.6.7.3 Nonsorted indexes . . . . . ... .. ... ... .. ... 13-37
13.6.7.4 Index membership options . . . . .. ... ... ... .. ... . 13-38
13.6.8 Non-SQL entity and index placement . . . . ... ... ... . ... 13-38
13.7 Physica tuning options for Commonweather Corporation . . . . . . . .. 13-39
13.7.1 Refined Commonweather Corporation database design (for SQL
implementation) . . . . .. ... 13-40
13.7.2 Refined Commonweather Corporation database design (for non-SQL
implementation) . . . ... ... 13-42
Chapter 14. Minimizing Contention Among Transactions . . . . . ... .. 14-1

Contents v



14.1 OVaErvVIeW . . . . 14-3

14.2 Sources of database contention . . . . ... ... 14-4
1421 Areacontention . . . . . ... ... 14-4
14.2.2 Entity occurrence contention . . . . . ... ... L 14-5

14.3 Minimizing contention . . . . .. ... 14-7
14.3.1 Minimizing contention for entitiesandareas . . . . . ... ... .. 14-7

Chapter 15. Determining the Size of the Database . . . . ... ... .. .. 15-1

151 Overview . . . . 15-3

15.2 Genera database sizing considerations . . . . ... ... ... ... ... 15-4
15.2.1 Sizing considerations for compressed and variable-length entities . . 15-4
1522 Space management . . . ... L 15-5
15.2.3 Overflow conditions . . . ... ... . ... ... .. ... ... ... 15-6

15231 CALCoverflow . .. ... ... ... .. ... .. 15-6
152.32 Cluster overflow . . . . . .. .. ... 15-7

153 Cdculatingthesizeof anarea . . . .. ... ... ... ... ....... 15-9
15.3.1 Step 1: Calculating the size of each cluster . . . . . .. . ... ... 15-9
15.3.2 Step 2: Determining the pagesize . . .. . ... ... ... ... .. 15-10
15.3.3 Step 3: Calculating the number of pagesinthearea . ... ... .. 15-13

15.4 Allocating space forindexes . . . . .. . ... ... .. 15-16
1541 Index structure . . . . . ... 15-16
15.4.2 Cadculating the size of theindex . . ... ... ... ... .. ... .. 15-20

15.4.2.1 Calculating the size of an index sorted on a symbolic key . . . 15-21
15.4.2.2 Calculating the size of an index sorted on db-key . . . . . . .. 15-24
15.4.2.3 Cadculating the size of an unsorted index . . . . ... ... .. 15-27

155 Placing areasinfiles . ... .. ... ... 15-30

156 Sizingamegabase . . ... . ... 15-33
15.6.1 Varying the database key format . . . . . .. ... ... . ... ... 15-33
15.6.2 Assigning segmentsto page groups . . . . . ..o 15-33

Chapter 16. Implementing Your Design . . . . . ... ... ... .. .... 16-1

16.1 OVEIVIEW . . . . 16-3

16.2 Reviewingthedesign . ... ... . ... ... ... .. ... .. 16-4
16.2.1 Step 1: Review the logical database model . . . . . .. .. ... .. 16-4
16.2.2 Step 2: Review the physical database model . . . . . . . . ... .. 16-4

16.2.2.1 Calculating 1/0s . . . . . .. . 16-4
16.2.2.2 Thingstowatchout for . .. ... ... ... ... ... ... 16-5
16.2.2.3 Questionstoaddress . . . . ... ... ... ... ........ 16-7

16.3 Implementing thedesign . . . . . . . . ... ... L 16-9
16.3.1 Implementing your designwith SQL . . . . . ... ... . ... ... 16-10
16.3.2 Implementation steps . . . . . ... 16-10
16.3.3 Implementing your design withnon-SQL . . . . . .. ... ... .. 16-14
16.34 Implementationsteps . . . . . ... 16-14

Appendix A. SQL Database Implementation for the Commonweather

Corporation . . . . .. . ... A-1
A.1l Logical database definition listing for the Commonweather database . . . . A-3
A.11 View definitions . . . .. . ... A-12

Appendix B. Non-SQL Database | mplementation for the Commonweather
Corporation . . . . .. .. B-1

vi CA-IDMS Database Design



B.1 Logical database definition listing for the Commonweather database . . . . B-3
B.1.1 Subschemadefinition . . ... ... ... ... .. ... .. ... . B-12

Contents Vii



viii CA-IDMS Database Design



How to Use This Manual

How to Use This Manual ix



What this manual is about

® Chapter 1, Overview of CA-IDMS/DB Database Design, describes the different
models you need to develop for a database and also introduces the software tools
that you will use to design and implement this database.

» Chapters 2 through 7, Logical Database Design, explain how to develop a
logical model for a database; the logical model describes all corporate information
to be maintained in the database.

» Chapters 8 through 14, Physical Database Design, explain how to develop a
physical model for a database and to refine the model to satisfy the performance
requirements both of individual transactions and of the system as a whole; the
physical model describes the way data is stored and accessed by the database
management system.

»  Chapters 15 and 16, Finalizing the Physical Design, explain how to determine
the size of a database and how to finalize your database design to prepare for
implementation.

X CA-IDMS Database Design



Who should use this manual

n  Database designers
= Database administrators

®  Others responsible for designing or implementing a CA-IDMS/DB database

How to Use This Manual Xi



How to proceed

Go through the chaptersin order when first learning how to design a database.

Refer to examples for the Commonweather Corporation database to see how
the model for a database evolves during the design process.

Look at supplemental information whenever necessary:

— Appendix A, SQL Database Implementation for the Commonweather
Corporation, shows how the sample database for the Commonweather Cor-
poration could be implemented with CA-IDMS SQL statements.

— Appendix B, Non-SQL Database Implementation for the Commonweather
Corporation, shows how the sample database for the Commonweather Cor-
poration could be implemented with CA-IDMS non-SQL statements.

Xii CA-IDMS Database Design



Related documentation

For more information you can also use:

CA-IDMS Database Administration
IDD DDDL Reference

CA-IDMS Utilities

CA-IDMS System Operations
CA-IDMS Messages and Codes
CA-IDMS DML Reference — COBOL
CA-IDMS DML Reference — Assembler
CA-IDMS DML Reference — PL/I
CA-IDMS Logical Record Facility

How to Use This Manual Xiii



Xiv. CA-IDMS Database Design



Chapter 1. General Guidelines

11 Overview . . . . . 1-3
1.2 Designimplementation . ... ... . ... .. ... ... ... 1-4

Chapter 1. General Guidelines 1-1



1-2 CA-IDMS Database Design



1.1 Overview

1.1 Overview

A database is a computer representation of information that exists in the real world.
Like a painting, a database tries to imitate reality. Designing a database is an art form,
and a successful database bears the mark of a thoughtful, creative designer.

For a given database problem, there may be several solutions. While some designs
are clearly better than others, there is no right or wrong design. The structure of your
database will therefore be determined not only by the requirements of the business but
also by your individual style as a designer. As you develop and refine the design for a
database, let your intuition be your guide.

The purpose of creating a database is to satisfy the information requirements of busi-
ness application programs. Before users can run their application programs, the data-
base administrator (DBA) must design and implement the corporate database. As the
DBA or database designer, you are responsible for database design and implementa-
tion.

Data models: To design a database, you must develop two different data models:

» The logical model describes al corporate information to be maintained in the
database. This model represents the way the user perceives the data.

® The physical model describes how the data is stored and accessed by the system.
The physical design for a database builds on the logical model. During the phys-
ical design process, you tailor the logical design to specific application perform-
ance requirements and plan the best use of storage resources.

Iterative process: Creating a design for a database is an iterative process.
After you have developed the logical and physical models, you need to review the
design process and the available documentation with users in your corporation. As
users make suggestions for improvement, you should make appropriate changes to the
design. Review the design repeatedly until it is acceptable to the user community.

Chapter 1. General Guidelines 1-3



1.1 Overview

1.2 Design implementation

The database design you create can be implemented using either of two implementa-
tion languages provided by CA-IDMS/DB:

» SQL DDL
» Non-SQL DDL

Design considerations are documented in this manual.

Note: For complete SQL DDL statements, see CA-IDMS SQL Reference. For com-
plete non-SQL DDL statements, see CA-IDMS Database Administration.

1-4 CA-IDMS Database Design



Chapter 2. Introduction to Logical Design

2.1 Overview
2.2 Determining the user's data needs
2.3 Determining the corporation's data needs
2.4 Overview of the logical design process

Chapter 2. Introduction to Logical Design 2-1



2-2 CA-IDMS Database Design



2.1 Overview

2.1 Overview

What is logical database design: Logical database design is the process of deter-
mining the logical data structures needed to support an organization's information
resource. The logical design process helps you to implement a database that satisfies
the requirements of your business organization.

Logical design is critica to the implementation of a corporate database. |f your
logical design is incomplete or has flaws, making changes to the means of data col-
lection, storage, and protection can be costly later on. By using a well-conceived pre-
l[iminary design, you can easily implement and test a database. A sound logical design
therefore helps to ensure a successful implementation.

A complete and accurate logical design for a database helps to ensure:

» Data independence — The logical design process yields a database model that is
independent of program or physical storage requirements. This model represents
the way data structures appear to users. It does not specify how data structures
are maintained in or processed by the computer.

»  Physical database flexibility — Because the logical design is independent of
storage and performance requirements, it can be used to implement a database
used with any hardware or software system. During the physical design process,
the logical design can be tailored to satisfy the needs of particular users or to suit
a particular data processing environment.

® |Integrity — The logical design identifies both the data maintained in your corpo-
ration and the rules of the business. These business rules can be used later on to
define integrity rules for the physical design.

m  User satisfaction — The logical design represents data structures in a simple,
understandable format. You can show the design to users at any stage of develop-
ment without intimidating them. The logical design can be easily modified to
incorporate users suggestions and feedback.

There are many viable approaches available for logical database design. In this
manual, we combine several design techniques, including systems analysis, the entity-
relationship approach, and normalization.

Note: The entity-relationship approach was developed by Peter Chen. For further
information on his approach to database design, see Entity-Relationship
Approach to Information Modeling and Analysis, Peter P. Chen, editor, ER
Institute (1981).

Chapter 2. Introduction to Logical Design 2-3



2.1 Overview

By using these techniques, you can create a logical model that consists of:
»  Descriptions of the data required by each user application

= A comprehensive picture of the corporation's data

2-4 CA-IDMS Database Design



2.2 Determining the user's data needs

2.2 Determining the user's data needs

Users of application programs require access to only selected portions of a database.
Therefore, you need to develop alogical model that includes descriptions of the data
required by each program.

Data tables: To the user of an application program, information in a CA-IDMS
database will appear in the form of data tables. Data tables consist of columns and
rows of related data. For example, a table might contain information about a compa-
ny's departments, organized under headings such as DEPT ID, DEPT NAME, and
DEPT BUDGET. A DEPARTMENT table with these categories of information is
illustrated in the following diagram.

Information for company departments is maintained in the DEPARTMENT data table.
A column represents a list of all department ids. A row represents a single depart-

ment.
Department data table
DEPT ID DEPT NAME DEPT BUBGET
124 MARKETING $ 410,000
128 DOCUMENTATION $ 500,500
131 RESEARCH AND DEVELOPMENT $ 890,000
110 OPERATIONS $ 1,900,000

Views: CA-IDMS/DB users can manipulate columns and rows of data by accessing
tables directly or by defining views of the database. Views enable users to select
specified rows or columns or to combine information from two or more tables. For
example, a view might use the relational join operation to combine information from
the DEPARTMENT table and the EMPLOY EE table, as illustrated below.

Relational join operation: To show company employees with their departments,
the DEPT/EMPLOY EE view uses the common DEPT ID column to join the
DEPARTMENT and EMPLOYEE data tables. This join operation selects all informa-
tion from the tables that pertains to department 110. In the DEPT/EMPLOYEE view,
the project operation has been used to include the DEPT ID and DEPT NAME
columns from the DEPARTMENT table and the EMP # and LAST NAME columns
from the EMPLOY EE table.

Chapter 2. Introduction to Logical Design 2-5



2.2 Determining the user's data needs

Department Employee
DEPTID  DEPT NAME DEPT BUDGET EMP # LAST NAME MANAGER DEPT ID
124 MARKETING $ 410,000 I 2011 FINE 2013 110
128 DOCUMENTATION § 500,500 2014 SMITH 2013 131
131 R&D §__890,000
110 OPERATIONS  § 1,900,000 | | I ;g:z SI\?I:\)F?TE 231: 1;2

Dept/Employee view

DEPT ID DEPT NAME EMP # LAST NAME
110 QOPERATIONS

2011

110 OPERATIONS 2013

FINE
GOODE

2-6 CA-IDMS Database Design




2.3 Determining the corporation's data needs

2.3 Determining the corporation's data needs

As the database designer, you must understand all data used in your corporation.
Once you have determined the user's information requirements, you need to develop a
comprehensive picture of the corporation's data. Your logical design must include a
complete description of this data.

Entity-relationship diagram: To represent the total picture, you can use the
entity-relationship approach to logical design. With this approach, you develop an
entity-relationship diagram, which serves as a model of the entire corporate enter-
prise. This diagram visually represents all data relationships that exist within the cor-
poration.

Entities: If data tables allow you to see the "trees’ in a CA-IDMS database, the
arrangement of entities in an entity-relationship diagram helps you to represent the
"forest". An entity is any general category of information used for business data proc-
essing. For example, the DEPARTMENT entity might describe information about the
departments in a corporation, while the EMPLOY EE entity might describe company
employees.

Entity-relationship diagramming: When two or more entities in a database share
a relationship, their relationship can be graphically depicted on the entity-relationship
diagram.

In the diagram below, the DEPARTMENT and EMPLOY EE data entities are related
through the relationship BELONGS TO.

DEPARTMENT

BELONGS
TO

EMPLOYEE

Chapter 2. Introduction to Logical Design 2-7



2.4 Overview of the logical design process

2.4 Overview of the logical design process

During the initial stage of logical design, you identify the business problem that users
hope to solve by creating a database. After interviewing several employees, you
perform a thorough analysis of the business system, determining the processing func-
tions performed by the organization and the flow of data during typical executions of
these functions.

An analysis of the system provides documentation of the types of data required by
users to perform their day-to-day business tasks. With this documentation, you can
create the entity-relationship diagram.

Procedure: Logica database design involves the following procedures:
®  Analyzing the business system
®  |dentifying the data entities (or data tables) and their relationships
®  |dentifying the data attributes
= Normalizing the data attributes
» Verifying that all business functions are supported by the logical design

Note: The first three procedures listed above are often performed concurrently. For
example, in many instances, you will identify data entities, relationships, and
attributes as you anayze the business system. By drawing a rough entity-
relationship diagram during the systems analysis phase, you can sometimes
simplify the design process.

Review the process: After you have performed the procedures listed above, you
need to review the process and the available documentation with users in your corpo-
ration. As these users make suggestions for improvement, make appropriate changes
to the design.

Each of the five major procedures of the logical design process is explained in detail
in Chapters 3 through 7.

2-8 CA-IDMS Database Design



Chapter 3. Analyzing the Business System

31
3.2
3.3
34
35
3.6

OVEIVIEW . . . o 3-3
Step 1: Defining general business functions . . . . . ... ... .. ... .. 35
Step 2: Defining specific business functions . . . . . ... ... .. ... .. 3-6
Step 3: Listing thedataelements . . . . . . ... ... ... ... ... .. 3-10
Step 4: Identifying the businessrules . . . . . . . .. ... oL 313
Step 5: Reviewing the results of analysis . . . . . .. ... ... ... ... 314

Chapter 3. Analyzing the Business System 3-1



3-2 CA-IDMS Database Design



3.1 Overview

3.1 Overview

Systems analysis is a necessary introduction to database design. Analyzing a corporate
business system is a serious endeavor, about which many books have been written. It
is not the purpose of this manual to describe the various methodologies available for
performing systems analysis. Since this manual deals primarily with database design,
it cannot present anything but an overview of systems analysis.

Analyzing the business system involves gathering information about the day-to-day
functions of the organization, documenting this information, gathering more informa-
tion, and so on until a clear picture develops of the operations of the organization. To
fully analyze the business system, you need to:

1. Define the general business functions
2. Break down the general business functions into specific functions
3. ldentify the data elements used for functions and categorize them by subject
4. ldentify the business rules
5. Review the results of analysis
You can follow steps 1 through 5 below to perform a thorough analysis of your organ-

ization. Before you perform these procedures, you may need to write a description of
the organization. This description will be used as the basis for systems analysis.

Chapter 3. Analyzing the Business System 3-3



3.1 Overview

Organization description for the Commonweather Corporation: Below isa
sample company description for the Commonweather Corporation.

Commonweather Corporation is a leader in the new, rapidly
expanding field of external climate control. Commonweather
has offices in five locations. Since its incorporation,
560 employees have been hired. Most of these employees are
still with the company and have held, on the average, two
different positions.

Because Commonweather anticipates rapid growth, it has
created an organizational structure that will be well

suited to a company with many more employees. It has
identified 41 different job titles and has created nine
departments, each with its own department head. Several
employees in each department have been appointed supervisory
positions and have hiring authority. Employees are, on
occasion, assigned to head or participate in interdepart-
mental projects. In two years, the personnel department
anticipates that there will be eight on-going projects.

To facilitate the search for new employees, the personnel
department has identified 68 skills that will need to be
represented in the company's future employee base. When
an employee is hired, the employee's level of expertise
for each of these skills is identified.

The personnel department believes that by offering
excellent employee benefits they can meet Commonweather's
personnel needs. Therefore, they offer generous insurance
benefits. Each employee is offered coverage in a Tife
insurance plan, a dental plan, and a health plan (HMO or
group-health). Employees can have complete family coverage
or dependent coverage only.

A copy of each insurance claim filed by an employee for
dental, hospital, or nonhospital services is sent to the
personnel department. Each dental or nonhospital claim

can be for up to ten dental or physician services. The
personnel department submits all claims to the insurance
companies. The department keeps a copy until the claim

is paid; then the claim is thrown out. An employee cannot
change coverage until all outstanding claims have been paid.

3-4 CA-IDMS Database Design



3.1 Overview

3.2 Step 1: Defining general business functions

What is a business function: A business function is an activity performed during
the day-to-day operations of an organization. The types of functions performed by a
company determine the logical organization of the corporate database. To develop a
complete logical design for a database, you therefore need to list all functions per-
formed at your organization.

Often a business function can be broken down into several smaller functions. To
avoid getting lost in the details, you should begin by listing the most general business
functions.

Deriving the function list: By reviewing the company description, you can derive
alist of the most general business functions. The following list of functions might be
derived from the company description for the Commonweather Corporation:

®  Hire employees

. Terminate employees

= Maintain employee information

»  Maintain office and department information

®»  Maintain information about salaries and jobs
®»  Maintain skills inventory

®»  Maintain personnel information about projects

®»  Maintain information about employee insurance

Chapter 3. Analyzing the Business System 3-5



3.2 Step 1: Defining general business functions

3.3 Step 2: Defining specific business functions

Smaller units of work: To break down the genera business functions into smaller
units of work, you need to think about what activities are involved in performing a
particular business procedure.

For example, the general function Maintain skills inventory might involve these activ-
ities:

® Add a skill

®  Add a skill for an employee

n  |dentify skills for an employee

® |dentify skill level for an employee skill

n |dentify all employees with a particular skill

n  |dentify al employees with a particular level of a particular skill

»  Upgrade an employee skill level
Transactions: After you have broken down each general function into its compo-
nent steps, you should be able to identify the most important application transactions

of your organization. Your descriptions of these transactions can then be used by the
MIS staff to develop application programs.

»» For further information on application development, see CA-ADS User Guide.

In many instances, business functions can be broken down into many levels. There-
fore, you may have to perform step 2 repeatedly to identify the most detailed functions
of the business. For example, you might need to break down the function Maintain
skills inventory several times before you can identify the application transactions.

3-6 CA-IDMS Database Design



3.3 Step 2: Defining specific business functions

Specific business functions for Commonweather Corporation: Below isa
complete list of detailed business functions for the Commonweather Corporation.

1. Hire employees:
a) Add an employee
b) Assign an employee's position
c) Assign an employee to an office
d) Assign supervisory authority for an employee
e) Assign supervisor for an employee

f) Assign an employee to a department

2. Terminate employees:
a) Delete an employee
b) Delete an employee's position
c) Remove an employee from an office
d) Remove supervisory authority for an employee

e) Remove an employee from a department

3. Maintain employee information:
a) Assign or change an employee's position
b) Assign an employee to or remove an employee from an office
c) Assign an employee to or remove an employee from a department
d) Assign or remove supervisory authority for an employee
e) Assign or change supervisor for an employee

f) List employees for a department

Chapter 3. Analyzing the Business System 3-7



3.3 Step 2: Defining specific business functions

4, Maintain office and department information:
a) Assign or delete an office
b) Change an office address
c) Add or delete a department

d) Change a department head

5. Maintain information about salaries and jobs:
a) Create a job
b) Provide a job description
c) Eliminate a job
d) Establish job salaries

e) Change job description or salary

6. Maintain skills inventory:
a) Add a skill
b) Add a skill for an employee
c) Identify skills for an employee
d) Identify skill level for an employee skill
e) Identify all employees with a particular skill
f) Identify all employees with a particular skill Tevel

g) Upgrade an employee skill Tlevel

7. Maintain personnel information about projects:
a) Add a new project or delete a completed one
b) Assign and remove employees from a project
c) Assign or remove a project leader

d) List names and phone numbers of all workers on a project

3-8 CA-IDMS Database Design



3.3 Step 2: Defining specific business functions

Maintain information about employee insurance:

a) Add or remove a health insurance plan for an employee
b) Identify the health insurance coverage for an employee
c) Change coverage for an employee on a plan

d) Add or change plan and coverage for an employee

e) Add or delete a claim

f) Show Tife and health insurance details for an employee

g) Submit duplicate claim forms for an employee accident

Chapter 3. Analyzing the Business System 3-9



3.4 Step 3: Listing the data elements

3.4 Step 3: Listing the data elements

Identify data each function requires: After you have listed the business func-
tions for your organization, you can begin to identify the data that each function
requires. Your list of data elements (data table columns) will most likely expand and
change as you gather more information about the organization. At this stage in the
design process, simply list those elements that are clearly associated with each busi-
ness task and group them according to general subject categories.

Consider using the following resources to identify data elements.

Interviews: Throughout the database design process, you conduct interviews with
company personnel. Your meetings should give you an idea what data elements are
required for particular business functions.

List of business functions: Many data elements can be identified in the list of
detailed business functions (application transactions). Review your list of functions
carefully to see if any elements can be recognized.

Data flow diagrams: To indicate the flow of information within the organization,
you need to draw data flow diagrams (DFDs) for each of the general and specific
business functions. A DFD should identify what information is needed to perform a
particular function, where this information resides (logically, not in storage), and where
it is likely to be moved during the course of processing. To identify the data flows,
perform the following procedures:

1. Ask these questions:
a. Where does the data come from?
b. What happens to it when it reaches the system?
¢. Where does it go?
d. What data should be restricted from user access?

Note: Once you have identified any restrictions that apply to the use of the infor-
mation, you can begin to consider which security measures should be
implemented for the system.

2. ldentify the sources of information by defining the data stores:
= People
® Departments
. Documents

3. Verify the completeness of the information with users.

Data flow diagrams for a sample business function: The following diagram
shows data flow diagrams (DFDs) for a genera business function and its component

steps.

3-10 CA-IDMS Database Design



3.4 Step 3: Listing the data elements

EMPLOYEE SKILL
DATA DATA

 code, Skill code
Emp Inl?irne gkilt © Skill name
p Skill description

IDENTIFY ADD A
SKILLS FOR AN SKILL
EMPLOYEE
Information
displayed ID NAME SKILL
in table format . - SKILL
e — FILE

(

Hierarchy plus Input-Process-Output diagrams: To indicate the flow of infor-
mation within the organization, you may also want to draw Hierarchy plus Input-
Process-Output (HIPO) diagrams for each of the business functions. A HIPO
diagram can help you to identify what information is needed to perform a particular
function. The diagram below shows a HIPO diagram for a sample business function.

SKILLS
INVENTORY
ADD A ADD SKILL FOR
SKILL AN EMPLOYEE

HIPO overview diagram for "IDENTIFY SKILLS FOR AN EMPLOYEE" module

Input Process Qutput
e RETRIEVE SKILL ® EMP NAME
e EMP ID INFORMATION FOR ® SKILL CODE
THE EMPLOYEE ® 3KILL DESCRIPTION

Chapter 3. Analyzing the Business System 3-11



3.4 Step 3: Listing the data elements

Example: The following data elements might be accessed by the Maintain skills
inventory function:

EMPLOYEE SKILL
Employee name Skill code
Employee ID Skill name
Employee office Date acquired

SkiTl description

The grouping of elements under the categories EMPLOY EE and SKILL may change
later on.

3-12 CA-IDMS Database Design



3.5 Step 4: Identifying the business rules

3.5 Step 4: Identifying the business rules

The rules of a business govern the execution of business functions against the data-
base. Additionaly, they define data integrity concerns that must be addressed during
the course of database design. The business rules for your organization can be derived
from the analysis of the company description, the function lists, the DFDs, and the
HIPO diagrams. Compile a complete list of these rules.

Business rules for the Commonweather Corporation: Below isalist of busi-
ness rules for the Commonweather Corporation.

1.

10.

There are currently five offices; expansion plans allow
for a maximum of ten.

Employees can change position, department or office.
There are 560 employees; allow for a maximum of 1000.

Records are maintained for an employee's previously held
positions.

Each department has one department head and several members
with supervisory positions with hiring authority.

Each office has a maximum of three telephone numbers.

When an employee is hired, his or her level of expertise
in each of several skills is identified.

When an employee is hired, he or she automatically becomes a
member of a particular department, and a particular office,
and reports to a particular supervisor.

Each job description has several salary grades associated
with it.

When hired, an employee is automatically covered by Tife
insurance.

Chapter 3. Analyzing the Business System 3-13



3.6 Step 5: Reviewing the results of analysis

3.6 Step 5: Reviewing the results of analysis

Once you have performed steps 1 through 4 above, you need to review the materials
you have gathered thus far. You need to ask yourself this question: Has anything
been overlooked?

Making changes later on in the design process can sometimes be costly. Therefore,
you should make sure that users have the chance to offer feedback at this point in the
design process.

Documentation: By the time you have completed systems analysis, the following
documentation should be available:

®  Genera and specific function lists

» Data flow diagrams or HIPO diagrams for the functions

® List of data elements

® List of business rules

Using the dictionary: You can use the Integrated Data Dictionary (IDD) to docu-
ment data elements and business rules.

3-14 CA-IDMS Database Design



Chapter 4. Identifying Entities and Relationships

41 OVEIVIBW . . . 4-3
4.2 ldentifying data entities . . . . . . ... 4-4
4.3 ldentifying relationships among entities . . . . . ... . ... ... ... .. 4-8
4.3.1 Typesof datarelationships . . . . ... ... .. ... ... ....... 4-8
4.3.2 Genera guidelines for identifying relationships . . . . . .. ... .. 4-11

Chapter 4. Identifying Entities and Relationships 4-1



4-2 CA-IDMS Database Design



4.1 Overview

4.1 Overview

By alowing you to document the total picture of an organization's data, the entity-
relationship method of performing logical design alows you to:

®  Use a top-down approach for logical design. To develop an entity-relationship
diagram for a database, you define the most general categories of information
first. Once you have identified these subject categories, you can then include
more specific information in the design.

®» Demonstrate the semantic meaning of an organization's information. This
approach alows you to create a logical design for a database by analyzing
descriptions of the organization that are written in everyday English. The entity-
relationship diagram, the end product of logical design, accurately reflects the lan-
guage used by employees to describe the organization. Therefore, this diagram
can be reviewed and refined easily.

What are entities and relationships: As you develop an entity-relationship
diagram for a database, you identify each data entity and relationship used by the
organization. An entity is a general category of business data that can be easily identi-
fied from the available documentation. A relationship defines a logical connection
between two associated data entities. For example, the relationship REPORTS TO
might identify a connection between a PERSON entity and a COMPANY entity.

Early in the logical design process, you need to determine the data entities and
relationships necessary to fulfill the business functions of your organization. This
chapter presents guidelines for identifying data entities and their relationships.

Chapter 4. Identifying Entities and Relationships 4-3



4.2 ldentifying data entities

4.2 ldentifying data entities

Identifying entities in the list of functions: Each data entity should appear as a
noun in the list of sentences that define business functions, as illustrated below. Many
nouns appear in the sentences that are not entities. Only nouns that describe data that
is meaningful to the organization itself should be identified as entities.

Because each organization has unique data requirements, there is no single correct set
of entities that can be derived from a list of functions. Given the same business func-
tions, two organizations may select different key nouns, thereby creating unique lists of
data entities.

1. Hire employees:
a) Add an employee
b) Assign an employee's position
c) Assign an employee to an office
d) Assign supervisory authority for an employee
e) Assign supervisor for an employee

f) Assign an employee to a department

2. Terminate employees:
a) Delete an employee
b) Delete an employee's position
c) Remove an employee from an office
d) Remove supervisory authority for an employee

e) Remove an employee from a department

4-4 CA-IDMS Database Design



4.2 ldentifying data entities

Maintain employee information:

a) Assign or change an employee's position

b) Assign an employee to or remove an employee from an office

c) Assign an employee to or remove an employee from a department
d) Assign or remove supervisory authority for an employee

e) Assign or change supervisor for an employee

f) List employees for a department

Maintain office and department information:
a) Assign or delete an office

b) Change an office address

c) Add or delete a department

d) Change a department head

Maintain information about salaries and jobs:
a) Create a job

b) Provide a job description

c) Eliminate a job

d) Establish job salaries.

e) Change job description or salary.

Maintain skills inventory:

a) Add a skill

b) Add a skill for an employee

c) Identify skills for an employee

d) Identify skill level for an employee skill

e) Identify all employees with a particular skill

f) Identify all employees with a particular skill level

g) Upgrade an employee skill Tevel

Chapter 4. Identifying Entities and Relationships 4-5



4.2 ldentifying data entities

7. Maintain personnel information about projects:
a) Add a new project or delete a completed one
b) Assign and remove employees from a project
c) Assign or remove a project leader

d) List names and phone numbers of all workers on a project

8. Maintain information about employee insurance:
a) Add or remove a health insurance plan for an employee
b) Identify the health insurance coverage for an employee
c) Change coverage for an employee on a plan
d) Add or change plan and coverage for an employee
e) Add or delete a claim
f) Show 1ife and health insurance details for an employee

g) Submit duplicate claim forms for an employee accident

Steps to identify entities: To identify the data entities for your organization:
1. Determine which nouns in the list of business functions are the key nouns.
2. List these key nouns on a separate piece of paper.
3. Draw a rectangular box around each noun.

Data entities for the Commonweather Corporation: Below is alist of data

entities that was derived from the list of functions for the Commonweather Corpo-
ration.

4-6 CA-IDMS Database Design



4.2 ldentifying data entities

OFFICE

COVERAGE

SKILL

LIFE INSURANCE
PLAN

DEPARTMENT

HEALTH INSURANCE
PLAN

EMPLOYEE

NON-HOSPITAL
CLAIM

PROJECT

HOSPITAL
CLAIM

JOB

DENTAL
CLAIM

Chapter 4. Identifying Entities and Relationships 4-7



4.3 Identifying relationships among entities

4.3 ldentifying relationships among entities

A relationship connects two associated data entities. The relationship between two
entities can often be expressed with a verb. For example, the relationship between the
DEPARTMENT entity and the EMPLOY EE entity might be expressed with the verb
phrase BELONGS TO, since an employee belongs to a department in an organization.

Representing the relationship between two entities: The relationship between
two entities is shown with a diamond. The name of the relationship is specified inside
the diamond.

DEPARTMENT

EMPLOYEE

No hard-and-fast rule exists for determining data relationships for an organization.

Data relationships depend on the requirements of the organization. The concept of
marriage, for example, could be viewed as an entity type or a relationship between
two people, depending on how the data was viewed.

4.3.1 Types of data relationships

Data entities in a database are related in one of three ways. one-to-one (1-1), one-to-
many (1-M), and many-to-many (M-M). Each of these types of relationships is
explained below.

One-to-one (1-1): In the one-to-one example below, for every EMPLOY EE entity
occurrence in the database, there can exist only one corresponding PROJECT entity
occurrence.

4-8 CA-IDMS Database Design



4.3 ldentifying relationships among entities

EMPLOYEE

PROJECT

One-to-many (1-M): In the one-to-many example below, for every DEPARTMENT
entity occurrence in the database, there may exist one or more corresponding
EMPLOQY EE entity occurrences.

DEPARTMENT

BELONGS
T0

M

EMPLOYEE

Many-to-many (M-M): In the many-to-many example below, for every SKILL
entity occurrence in the database, there can exist one or more corresponding
EMPLOY EE entity occurrences, for every EMPLOY EE entity occurrence in the data-
base, there can also exist one or more corresponding SKILL entity occurrences.

Chapter 4. Identifying Entities and Relationships 4-9



4.3 Identifying relationships among entities

EMPLOYEE

SKILL

Other types of data relationships: In addition to relationships between two

entity types, the following types of data relationships are acceptable in an entity-
relationship model:

n A relationship can be defined for only one entity type. For example, to define
a relationship between different employees in an organization, you might want to
combine different data occurrences from the EMPLOY EE entity. In this case, the
relationships among employees might be expressed as MANAGES and REPORTS

TO, as shown in in the entity-relationship diagram of Commonweather Corpo-
ration.

EMPLOYEE

REPGRTS
TO

. There can be more than one relationship defined for a particular group of
entities. For example, two relationships might exist between EMPLOY EE and
DEPARTMENT: BELONGS TO could keep track of al the employeesin a
department, and HEADS could indicate those employees with supervisory

authority in a department, in the entity-relationship diagram of Commonweather
Corporation.

4-10 CA-IDMS Database Design



4.3 ldentifying relationships among entities

DEPARTMENT

BELONGS TG

EMPLOYEE

4.3.2 General guidelines for identifying relationships

To identify the relationships between data entities, perform the following steps:

1. Using the list of business functions, identify relationships between entities as
verbs. In those instances where no verb adequately expresses the relationship, join
the two entity names to form a name for the relationship. For example, the
DEPARTMENT and EMPLOY EE entities could be connected through the
relationship BELONGS TO or through the relationship DEPT-EMPLOY EE.

2. List these key verbs between the entities they connect and draw a diamond around
each one.

3. Associate entities with the appropriate relationships by connecting them with lines.
4. Label each relationship to show whether it is 1-1, 1-M, or M-M.
Entity-relationship diagram for Commonweather Corporation: The fol-

lowing diagram illustrates a simple entity-relationship diagram for the Commonweather
Corporation.

Chapter 4. ldentifying Entities and Relationships 4-11



4.3 Identifying relationships among entities

JOoB

PROJECT

18
POSITIONED

PAYS
FOR PHY.

M

DEPARTMENT

1

1

BELONGS
TO

M

EMPLOYEE

PAYS
FOR HOSP

M

NON-HQOSPITAL
CLAIM

HOSPITAL
CLAIM

1S
LOCATED

M

OFFICE

SKILL

LIFE INSURANGCE
PLAN

HEALTH
INSURANCE PLAN

DENTAL
CLAIM

4-12 CA-IDMS Database Design




Chapter 5. Identifying Attributes

51 OVEIVIEBW . . . o 5-3
5.2 Establishing naming conventions for the attributes . . . . . .. .. ... .. 5-4
5.3 ldentifying the attributes of each entity . . . . .. ... ... ... ... ... 55
5.3.1 Grouping the attributes . . . . . . ... ... ... ... ... ... ... 5-6
5.3.2 Identifying unique keys . . .. . . . ... 5-8
5.3.3 Establishing primary keys . . . . . . ... .o 59
5.3.4 ldentifying weak entities . . . . . ... ... L 511
5.4 Identifying the attributes for each relationshiptype . . . ... ... .. .. 5-12
5.5 Identifying attribute characteristics . . . . . ... .. ... ... ... ... 5-14

Chapter 5. Identifying Attributes 5-1



5-2 CA-IDMS Database Design



5.1 Overview

5.1 Overview

Attributes and values: An attribute is the smallest unit of data that describes an
entity or a relationship. A single occurrence of an attribute is called a value. For
example, John Smith might be one of severa values that exist for the attribute NAME
of the entity EMPLOYEE. Several synonyms are used in the computer industry to
refer to an attribute, including data item, data element, field, and column. All of these
terms have roughly the same meaning.

In this chapter, we will identify the attributes that are associated with each entity and
data relationship defined so far during the logical design process.
Identifying data attributes involves the following procedures:

1. Establishing naming conventions for the attributes

2. Identifying the attributes of each entity

3. ldentifying the attributes for each relationship type

Each of these procedures is explained below.

Chapter 5. Identifying Attributes 5-3



5.2 Establishing naming conventions for the attributes

5.2 Establishing naming conventions for the attributes

Because the process of identifying attributes yields information from many different
sources, the information can contain considerable redundancy. Users and data proc-
essing professionals have very different ways of perceiving the same data. The same
piece of information may be called by several names, making it difficult to see that
these names are synonyms for the same attribute. In addition, two different pieces of
data may sometimes be called by the same name.

As soon as the business meaning of each attribute is clear, you should establish con-
ventions for naming the attributes. Adopting a set of standardized naming conventions
appropriate for the organization saves much time and confusion, and helps to ensure an
efficient and effective design.

5-4 CA-IDMS Database Design



5.3 Identifying the attributes of each entity

5.3 Identifying the attributes of each entity

Each entity in a database is described by certain attributes. Attributes are those pieces
of information about an entity that are required for processing performed by the busi-
ness functions. By carefully examining the business functions, you can determine
which attributes need to be maintained for each entity in the database.

Attribute categories: Attributes for a data entity fall into the following categories:

Unique keys — To distinguish data occurrences, you need to identify unique
keys. A unique key is an attribute or combination of attributes whose value(s)
uniquely identifies an occurrence of an entity or relationship. Identification
numbers and codes are typically used as unique keys, since their values are rarely
modified.

Primary keys — A primary key is a unique key that is used to represent an entity
in a database. For example, the attribute EMP ID might be used as the primary
key of the entity EMPLOYEE.

Secondary keys — A secondary key is an attribute in a data entity that is used by
certain business functions to access occurrences of that entity. For example, the
EMP NAME attribute might be the secondary key for the entity EMPLOY EE.

Foreign keys — A foreign key is an attribute of an entity or relationship that is
also used as the primary key of another entity. A foreign key is used to relate two
data entities. For example, to relate the DEPARTMENT and EMPLOY EE enti-
ties, you might define the DEPT D attribute, which is the primary key of the
DEPARTMENT entity, as the foreign key of the EMPLOY EE entity.

By itself, a foreign key can never be the primary key of the entity in which it is
stored. Since the DEPT ID attribute could never uniquely identify an occurrence
of the EMPLOY EE entity, it could never be its primary key.

However, a foreign key can be part of the primary key of an entity. In some
instances, you need to combine a foreign key with another data element in an
entity to create its primary key.

Non-key data — All attributes of an entity that are not unique keys, primary
keys, secondary keys, or foreign keys are considered non-key attributes. For
example, the EMP ADDRESS attribute is a non-key attribute of the EMPLOY EE
entity.

As you identify the attributes of each data entity, you need to determine whether the
attributes are unique keys, primary keys, secondary keys, foreign keys, or non-key
attributes.

Chapter 5. Identifying Attributes 5-5



5.3 Identifying the attributes of each entity

5.3.1 Grouping the attributes
You can identify the attributes associated with an entity by examining the following
materials:
® List of business functions
® List of business rules
n List of data elements that you compiled during systems analysis

Attributes for entities: As you determine the attributes that are associated with a
particular entity, you should list the attributes, as shown below:

5-6 CA-IDMS Database Design



5.3 Identifying the attributes of each entity

OFFICE CODE
OFFICE ADDRESS
OFFICE SPEED DIAL
OFFICE AREA CODE
OFFICE PHONE

DEPARTMENT

DEPT ID
DEPT NAME
DEPT HEAD ID

SKILL CODE
SKILL NAME
SKILL DESCRIPTION

EMPLOYEE

EMP ID

EMP NAME

SS NUMBER

EMP ADDRESS

EMP HOME PHONE

DATE OF BIRTH

DATE OF HIRE

DATE OF TERMINATION
STATUS

COVERAGE

HEALTH PLAN CODE
COVERAGE TYPE
COVERAGE DESCRIPTION
SELECTION DATE
TERMINATION DATE

JOB

JOB ID

JOB TITLE

JOB DESCRIPTION
REQUIREMENTS

MAX SALARY

MIN SALARY

NUMBER OF POSITIONS
NUMBER OPEN

SALARY GRADE

PROJECT

PROJECT CODE
PROJECT LEADER
PROJECT DESCRIPTION
EST START DATE

ACT START DATE

EST END DATE

ACT END DATE

HEALTH INS PLAN

LIFE

HEALTH PLAN CODE
INSCO NAME

INSCO ADDRESS
INSCO PHONE

PLAN DESCRIPTION
GROUP NUMBER

INS PLAN

LIFE PLAN CODE
INSCO NAME

INSCO ADDRESS
INSCO PHONE

PLAN DESCRIPTION

Chapter 5. Identifying Attributes 5-7



5.3 Identifying the attributes of each entity

DENTAL CLAIM

DENTAL CLAIM ID

EMP ID

COVERAGE TYPE

DATE OF CLAIM

PATIENT NAME

RELATION TO EMPLOYEE
PATIENT SEX

PATIENT DATE OF BIRTH
PATIENT ADDRESS

NUMBER OF DENTAL PROCEDURES

TOTAL CHARGES

DENTIST LICENSE NUMBER

DENTIST NAME

DENTIST ADDRESS
PROCEDURE ID
PROCEDURE DESCRIPTION
PROCEDURE FEE

SERVICE DATE

NON-HOSPITAL CLAIM

NON-HOSPITAL CLAIM ID
DATE OF CLAIM

EMP ID

COVERAGE TYPE

PATIENT NAME

RELATION TO EMPLOYEE
PATIENT SEX

PATIENT DATE OF BIRTH
PATIENT ADDRESS
NUMBER OF PROCEDURES
TOTAL CHARGES
DIAGNOSIS

PHYSICIAN ID
PHYSICIAN NAME
PHYSICIAN ADDRESS
PROCEDURE ID
PROCEDURE DESCRIPTION
PROCEDURE FEE

SERVICE DATE

HOSPITAL CLAIM

HOSPITAL CLAIM ID
DATE OF CLAIM

EMP ID

COVERAGE TYPE
PATIENT NAME
RELATION TO EMPLOYEE
PATIENT SEX

PATIENT DATE OF BIRTH
PATIENT ADDRESS
DIAGNOSIS

TOTAL CHARGES
HOSPITAL NAME
HOSPITAL ADDRESS
ADMIT DATE

DISCHARGE DATE

5.3.2 ldentifying unique keys

An entity can have many attributes, but only some attributes uniquely identify occur-
rences of that entity. There may be more than one unique key in an entity. For
example, the EMPLOY EE entity has two unique keys, EMP ID and EMP SS NUM.

For each entity, choose from among its attributes the ones that uniquely identify each
occurrence. The attribute that best serves this purpose is a good candidate for a
primary key. If there is no attribute that uniquely identifies an entity, it may be neces-

5-8 CA-IDMS Database Design



5.3 Identifying the attributes of each entity

sary to combine two or more attributes for a unique key or create an attribute that
serves as a key.

5.3.3 Establishing primary keys

What is a primary key: The primary key for each entity must be a unique key.
From a business standpoint, the primary key should also be the most important
element(s) in the entity. The requirements of your organization will determine which
unique key attribute will be the primary key.

Suppose that you must select a primary key for the EMPLOY EE entity. Since both
the EMP ID and EMP SS NUM attributes can be used to uniquely identify an occur-
rence of this entity, you need to select one of these keys. The EMP ID attribute is
probably used most often for processing; therefore, this element is the best choice for
the primary key.

Entities with primary keys: Once you have determined the primary key for an
entity, you should mark this key with an asterisk (*), as shown below:

OFFICE JOB
*= OFFICE CODE * JOB ID
OFFICE ADDRESS JOB TITLE
OFFICE SPEED DIAL JOB DESCRIPTION
OFFICE AREA CODE REQUIREMENTS
OFFICE PHONE MAX SALARY
MIN SALARY
DEPARTMENT NUMBER OF POSITIONS
NUMBER OPEN
* DEPT ID SALARY GRADE
DEPT HEAD ID
SKILL PROJECT
* SKILL CODE * PROJECT CODE
SKILL NAME PROJECT LEADER
SKILL DESCRIPTION PROJECT DESCRIPTION
EST START DATE
ACT START DATE
EMPLOYEE EST END DATE
ACT END DATE
* EMP ID

SS NUMBER

EMP ADDRESS
EMP HOME PHONE
DATE OF BIRTH
DATE OF HIRE
DATE OF TERMINATION PLAN DESCRIPTION
STATUS

HEALTH INS PLAN

* HEALTH PLAN CODE
INSCO NAME
INSCO ADDRESS
INSCO PHONE

GROUP ID

Chapter 5. Identifying Attributes 5-9



5.3 Identifying the attributes of each entity

LIFE INS PLAN

= LIFE PLAN CODE
INSCO NAME
INSCO ADDRESS
INSCO PHONE
PLAN DESCRIPTION
GROUP ID

DENTAL CLAIM

* DENTAL CLAIM ID
EMP ID
COVERAGE TYPE
DATE OF CLAIM
PATIENT NAME
RELATION TO EMPLOYEE
PATIENT SEX
PATIENT DATE OF BIRTH
PATIENT ADDRESS

NUMBER OF DENTAL PROCEDURES

TOTAL CHARGES

DENTIST LICENSE NUMBER

DENTIST NAME

DENTIST ADDRESS
PROCEDURE ID
PROCEDURE DESCRIPTION
PROCEDURE FEE

SERVICE DATE

NON-HOSPITAL CLAIM

* NON-HOSPITAL CLAIM ID
EMP ID
COVERAGE TYPE
DATE OF CLAIM
PATIENT NAME
RELATION TO EMPLOYEE
PATIENT SEX
PATIENT DATE OF BIRTH
PATIENT ADDRESS
NUMBER OF PROCEDURES
TOTAL CHARGES
DIAGNOSIS
PHYSICIAN ID
PHYSICIAN NAME
PHYSICIAN ADDRESS
PROCEDURE ID
PROCEDURE DESCRIPTION
PROCEDURE FEE
SERVICE DATE

COVERAGE

* HEALTH PLAN CODE

* COVERAGE TYPE
COVERAGE DESCRIPTION
SELECTION DATE
TERMINATION DATE

HOSPITAL CLAIM

* HOSPITAL CLAIM ID
EMP ID
COVERAGE TYPE
DATE OF CLAIM
PATIENT NAME
RELATION TO EMPLOYEE
PATIENT SEX
PATIENT DATE OF BIRTH
PATIENT ADDRESS
DIAGNOSIS
TOTAL CHARGES
HOSPITAL NAME
HOSPITAL ADDRESS
ADMIT DATE
DISCHARGE DATE

5-10 CA-IDMS Database Design



5.3 Identifying the attributes of each entity

5.3.4 Identifying weak entities

What is a weak entity: You may find that some entities in your database are iden-
tified only by their relationship with another entity. Such entities are called weak
entities. Typically, a weak entity has a primary key that contains only one foreign
key.

The entity DEPENDENT, for example, is a weak entity because it uses the primary
key of the EMPLOYEE entity as part of its own primary key. Whenever an employee
leaves the corporation, al information about that employee as well as any information
about dependents must be erased from the database.

The attribute NAME is the only candidate for a primary key in the DEPENDENT
entity, but NAME does not uniquely identify each occurrence of the DEPENDENT
entity. Therefore, the primary key of the DEPENDENT entity must be a concatenation
of the NAME attribute and the EMP ID attribute of the EMPLOY EE entity. This
concatenated key provides the link between employees and their associated dependents.

Indicating a weak entity: You identify a weak entity on the entity-relationship
diagram by drawing a double box around the entity, as shown in the diagram below.

DEPENDENT is a weak entity because it uses the primary key of the EMPLOYEE
entity as part of its own primary key.

EMPLQOYEE

1

<>

Chapter 5. Identifying Attributes 5-11



5.4 Identifying the attributes for each relationship type

5.4 ldentifying the attributes for each relationship type

Some data relationships have attributes that describe meaningful non-key information,
others do not, as described below:

= A one-to-one relationship sometimes carries non-key data. An example of a
one-to-one relationship is LEADS, where the business rules state that each project
has a single leader, and one employee may be project leader for only one project.
For this relationship, it may be important to carry the dates when the project
leader begins and ends |leadership responsibility.

= A one-to-many relationship typically does not carry any non-key data. The
relationship LOCATES, for example, simply relates an employee to a particular
office. There is no additional information about that relationship that is required
by the business functions.

®  Many-to-many relationships usually do carry non-key information required
by the business functions. EXPERT IN, for example, carries information about a
particular employee's level of expertise with a particular skill.

A sdf-referencing structure is a special kind of many-to-many relationship
that sometimes carries non-key data. For example, in the Commonwesther Cor-
poration, the relationship between workers and managers is defined as REPORTS
TO and the relationship between managers and workers is defined as MANAGES.
Non-key data about the REPORTS TO and MANAGES relationships might be the
dates on which a relationship began and ended.

List the attributes: As you determine the attributes that are associated with a par-
ticular relationship, you should list these attributes, as follows:

5-12 CA-IDMS Database Design



5.4 Identifying the attributes for each relationship type

IS LOCATED

* OFFICE CODE
* EMP ID

LEADS

* PROJECT CODE
* WRKR EMP ID

WORKS ON

* PROJECT CODE
* WRKR EMP 1ID

EXPERT IN
* EMP 1D
* SKILL CODE
SKILL LEVEL
DATE ACQUIRED

CHOOSES
= EMP ID
* HEALTH PLAN CODE
* COVERAGE TYPE
INSURED BY

* EMP ID
* LIFE PLAN CODE

PAYS FOR HOSP

* HEALTH PLAN CODE
* COVERAGE TYPE
* HOSPITAL CLAIM ID

PAYS FOR PHY
* HEALTH PLAN CODE

* COVERAGE TYPE
* NON-HOSPITAL CLAIM ID

BELONGS TO

%= DEPT ID
* EMP ID

HEADS

%= DEPT ID
* HEAD EMP ID

IS POSITIONED

= EMP ID

* JOB ID
SALARY
COMMISSION PERCENT
BONUS PERCENT
OVERTIME RATE
START DATE
END DATE

REPORTS TO

* WRKR EMP ID

* SUPR EMP 1D
WRKR BEGIN DATE
WRKR END DATE

MANAGES
* SUPR EMP ID
* WRKR EMP ID
SUPR BEGIN DATE
SUPR END DATE
SPECIFIES
* HEALTH PLAN CODE
* COVERAGE TYPE
PAYS FOR DENT
* HEALTH PLAN CODE

* COVERAGE TYPE
%= DENTAL CLAIM ID

Chapter 5. Identifying Attributes 5-13



5.5 Identifying attribute characteristics

5.5 Identifying attribute characteristics

Attribute characteristics: At thistime, you can identify characteristics of the attri-
butes you have listed. Attribute characteristics include:

® Length
= Type (alphanumeric or numeric)

»  Nullability

Null values: Sometimes you do not know the data associated with a particular attri-
bute. The attribute might not be applicable to a particular entity occurrence, such as
the phone number of an employee with no phone. Or the data simply might not be
known yet, such as the credit rating of a new customer. Such attributes should allow
null values. An attribute that does not allow null values requires that data aways be
entered.

5-14 CA-IDMS Database Design



Chapter 6. Normalizing the Data

6.1 OVerview . . . . . . . 6-3
6.2 Why normaizedata . ... ... ... .. ... ... ... 6-4
6.3 Norma formsof data . . . . ... ... . ... ... ... ... .. ... .. 6-5
6.3.1 Firstnorma form . . . ... . ... ... 6-5
6.3.2 Second norma form . . ... .. 6-6
6.3.3 Third normal form . . . . ... ... 6-7
6.4 How tonormalizedata . . .. ... ... ... ... ... . ... .. ..... 6-9
6.4.1 Listing datain first normal form . . . . ... ... ... ... ... ... 6-9
6.4.2 Listing datain second normal form . . . . ... ... ..o 6-11
6.4.3 Listing data in third norma form . . . ... ... ... 6-13
6.5 Normalized data for the Commonweather Corporation . . . . .. .. . .. 6-16

Chapter 6. Normalizing the Data 6-1



6-2 CA-IDMS Database Design



6.1 Overview

6.1 Overview

Goals of normalization: You can use normalization techniques to refine the entity-
relationship model. Once you have determined the entities, relationships, and attri-
butes of a database, you can use normalization procedures to ensure that each
entity and relationship is designed in its simplest form. The goal of normalization
is to develop entities that consist of a primary key, together with a set of attributes
whose values are determined solely by the value of the primary key.

In many instances, you will find that the entities you developed earlier are already
organized in easy-to-use structures. The entity-relationship approach often breaks enti-
ties down into normalized structures naturally. In those instances when data entities
and relationships are fully normalized, the normalization process does not result in any
changes to the design.

Chapter 6. Normalizing the Data 6-3



6.2 Why normalize data

6.2 Why normalize data

Update anomalies: Through normalization, you can develop a database that is pro-
tected against update anomalies. Update anomalies are abnormal processing condi-
tions that result from the execution of update functions against the database. Update
anomalies sometimes compromise the integrity of the database; therefore, you need to
design data entities and relationships that, when implemented as data tables, are fully
protected against such anomalies.

Types of anomalies: The following examples illustrate two types of anomalies:

» Deletion anomaly  Suppose you want to delete some information from the fol-
lowing data table:

JOB

EMP ID JOB ID SALARY GRADE SALARY

1216 ADM 18 15000
1041 MGR 30 30000
1633 INST 23 22000
1063 ADM 18 18000

In the JOB table, the SALARY GRADE depends only on the JOB ID. If you
delete the row for employee 1041 in the JOB table, you therefore lose not only the
fact that employee 1041 is a manager, but also the fact that the SALARY GRADE
for a manager is 30.

® |nsertion anomaly Suppose you want to add some information to the JOB
table. You want to enter the fact that a programmer has a SALARY GRADE of
21. Because of the structure of the JOB table, you cannot enter this information
until someone actually has a job as a programmer.

Preventing anomalies: To prevent anomalies from occurring during deletions and
insertions of rows in the JOB table, you might create two separate tables:

POSITION JOB
EMP ID JOB ID SALARY JOB ID SALARY GRADE
1216 ADM 15000 ADM 18
1041 MGR 30000 MGR 30
1633 INST 22000 INST 23
1063 ADM 18000 PGMR 21

Now you can delete the row for employee 1041 in the POSITION table without losing
the fact that the SALARY GRADE for a manager is 30. You can aso specify that a
programmer has a SALARY GRADE of 21 in the JOB table without first specifying a
programmer's name.

By breaking down data tables into smaller tables, you prevent update anomalies from
occurring.

6-4 CA-IDMS Database Design



6.3 Normal forms of data

6.3 Normal forms of data

All normalized data tables exist in one of the following normal forms:
® First normal form
® Second normal form

® Third normal form

A data table that exists in a particular normal form complies with the rules that define
that form. A table that exists in second normal form satisfies the criteria for first
normal form; in addition, a table in third normal form satisfies the criteria for both
first and second normal forms.

Goal of normalization: Since the rules of third normal form are the most rigorous,
they are also the most desirable. The goal of the normalization process is to create
data tables that are organized in third normal form.

Note: Severa database theorists have suggested that tables in third normal form can
be broken down into even simpler structures. For example, some theorists
recommend that tables be organized in fourth or fifth normal form. However,
at the present time, it seems most practical to organize data tables in third
normal form.

The first, second, and third normal forms of data organization are discussed in the
following sections.

6.3.1 First normal form

A datatableisin first normal form if each of the attributes of a given row contains a
single value. A tablein first normal form has no repeating groups.

Table not in first normal form: Since the following table contains a repeating
element called BUDGET, it is not in first normal form:

Note: In these examples, primary key attributes are highlighted.
DEPARTMENT
DEPT ID DEPT NAME BUDGET

1000 OPERATIONS 50000
30000
40000
30000

Table in first normal form: The following table is in first normal form:

Chapter 6. Normalizing the Data 6-5



6.3 Normal forms of data

DEPARTMENT
DEPT ID DEPT NAME
1000 OPERATIONS
2046 DEVELOPMENT
3333 DOCUMENTATION
5653 MARKETING

6.3.2 Second normal form

A data table isin second normal form if it isin first normal form and its entire
primary key determines the values of each of its attributes; when atable is in second
normal form, each of the attributes is dependent on the whole key and not any part of
the key.

Table in first normal form: The POSITION table shown below isin first normal
form but not in second normal form:

POSITION
EMP ID JOB ID EMP NAME SALARY GRADE SALARY
1216 ADM SMITH 18 15000
1041 MGR JONES 30 30000
1633 INST DAVIS 23 22000
1063 ADM EVANS 18 18000

In the POSITION table shown above, the primary key is the concatenation of EMP ID
and JOB ID. This table is not in second normal form because some of the non-key
attributes are dependent on a part of the primary key. For example, the EMP NAME
attribute is dependent on only EMP 1D, while the SALARY GRADE attribute is
dependent only on JOB ID.

Table in first and second normal forms: The following table is in both first and
second normal forms:

POSITION
EMP ID JOB ID SALARY
1216 ADM 15000
1041 MGR 30000
1633 INST 22000
1063 ADM 18000

In the POSITION table shown above, the primary key is the concatenation of EMP ID
and JOB ID. The POSITION table is in first normal form because it contains no
repeating groups. It isin second normal form because the non-key attribute SALARY
is dependent on the entire primary key (the concatenation of EMP ID and JOB ID). If
a user knows an EMP ID value and a JOB ID value, the user can easily find out the
SALARY for an employee who works in a particular job.

6-6 CA-IDMS Database Design



6.3 Normal forms of data

6.3.3 Third normal form

A data table is in third normal form if it isin second normal form and no non-key
attribute determines the value of another non-key attribute; a table that is in third
normal form contains no transitive dependencies among non-key attributes.

Table not in third normal form: The EMPLOY EE table shown below is not in
third normal form:

EMPLOYEE
EMP ID EMP NAME DEPT ID DEPT NAME
1216 SMITH 1000 OPERATIONS
1041 JONES 3500 MARKETING
1633 DAVIS 3400 DOCUMENTATION
1063 EVANS 2000 SUPPORT

Let's assume that EMP ID is the primary key of the EMPLOY EE table shown above.
In this case, the table is not in third normal form because a non-key attribute has a
transitive dependency on another non-key attribute. The DEPT NAME attribute is
dependent on the DEPT ID attribute; a DEPT NAME value can be determined by the
value of a particular DEPT ID.

Normalizing the table: To normalize the EMPLQY EE table shown above, you
could break down this table into two separate tables:

EMPLOYEE DEPARTMENT
EMP ID EMP NAME DEPT ID DEPT NAME
1216 SMITH 1000 OPERATIONS
1041 JONES 3500 MARKETING
1633 DAVIS 3400 DOCUMENTATION
1063 EVANS 2000 SUPPORT

Since the EMP NAME attribute is not dependent on any other non-key attribute, the
EMPLOY EE table shown above is in third normal form. In addition, since the DEPT
NAME attribute is not dependent on any other non-key attribute, the DEPARTMENT
table is @so in third norma form.

Rules of first, second, and third normal forms: The following table summa-
rizes the rules of each normal form of data organization.

Normal form Rules

First norma form A data table isin first norma form if each
of the attributes of a given row contains a
single value; atable in first normal form
has no repeating groups.

Chapter 6. Normalizing the Data 6-7



6.3 Normal forms of data

Normal form

Rules

Second normal form

A data table isin second normal form if it
isin first normal form and its entire primary
key determines the values of each of its
attributes; when atable is in second normal
form, each of the attributes is dependent on
the whole key and not any part of the key.

Third normal form

A data table isin third normal form if it is
in second normal form and no non-key attri-
bute determines the value of another
non-key attribute; a table that is in third
normal form contains no transitive depend-
encies among non-key attributes.

6-8 CA-IDMS Database Design



6.4 How to normalize data

6.4 How to normalize data

The primary key for a data entity is used to determine whether the attributes for that
entity satisfy the rules of second and third normal form. Sometimes you will need to
organize the same list of attributes for an entity in different ways, depending on which
attribute(s) is selected as the primary key.

Atomic primary key: The DENTAL CLAIM entity shown below is uniquely iden-
tified by an atomic primary key. An atomic primary key is a primary key that con-
sists of a single attribute. The atomic primary key for the DENTAL CLAIM entity
shown below is DENTAL CLAIM ID.

DENTAL CLAIM

= DENTAL CLAIM ID
EMP ID
COVERAGE TYPE
DATE OF CLAIM
PATIENT NAME
RELATION TO EMPLOYEE
PATIENT SEX
PATIENT DATE OF BIRTH
PATIENT ADDRESS
NUMBER OF DENTAL PROCEDURES
TOTAL CHARGES
DENTIST LICENSE NUMBER
DENTIST NAME
DENTIST ADDRESS
PROCEDURE ID
PROCEDURE DESCRIPTION
PROCEDURE FEE
SERVICE DATE

In all the examples that follow, primary key attributes are indicated with a star (*).

6.4.1 Listing data in first normal form
After you have listed a particular entity and its attributes, you need to verify that the
entity isin first normal form:
1. Remove repeating groups:
a. For each repeating group identified, create a new entity.
b. List its attributes.
c. ldentify its primary key.

d. For each new entity created, create a relationship that relates it to the original
entity in a 1-M manner.

2. Update the E-R diagram to reflect your changes.

Chapter 6. Normalizing the Data 6-9



6.4 How to normalize data

Dental claim information in first normal form: The entities that describe dental
claim information are listed in first normal form in the table below. The bold entity
and relationship were added to organize the information in first normal form.

Data

Entity/
relationship

Description

DENTAL CLAIM

*

DENTAL CLAIM ID

EMP ID

COVERAGE TYPE

DATE OF CLAIM

PATIENT NAME

RELATION TO EMPLOYEE
PATIENT SEX

PATIENT DATE OF BIRTH
PATIENT ADDRESS
DENTIST LICENSE NUMBER
DENTIST NAME

DENTIST ADDRESS

Entity

Describes a dental claim for an
employee.

LISTS A DP
(dental procedure)

* DENTAL CLAIM ID
* PROCEDURE ID

Relationship

Relates DENTAL CLAIM to
DENTAL PROCEDURE.

DENTAL PROCEDURE

* DENTAL CLAIM ID
* PROCEDURE ID

PROCEDURE DESCRIPTION
PROCEDURE FEE
SERVICE DATE

Entity

Describes the procedures for a
particular denta claim; this
weak entity was derived from
the DENTAL CLAIM entity
because its attributes appeared
as repeating elements.

6-10 CA-IDMS Database Design



6.4 How to normalize data

DENTAL
CLAIM

6.4.2 Listing data in second normal form

To verify that al entities are in second normal form, perform the following steps:

1. Identify entities with compound keys. Entities with compound keys are some-
times in first normal form but not in second normal form. Therefore, you need to
carefully examine each entity that has more than one attribute in its primary key.
By definition, entities with atomic keys are in second normal form (that is, if the
entity contains no repeating groups and you selected an appropriate attribute as the
primary key).

2. Remove partially dependent attributes:

a. Locate any attributes that are dependent on only part of a compound key.

b. Remove these attributes and create a new entity. Create a new relationship to
relate the new entity to the entity from which it was removed.

3. Update the E-R diagram to reflect these changes.

Dental claim information in second normal form: The entities and relation-
ships that describe dental claim information are listed in second normal form in the
following table. No changes were made to organize the information in second normal
form.

Chapter 6. Normalizing the Data 6-11



6.4 How to normalize data

Data Entity/ Description
relationship
DENTAL CLAIM Entity Describes a dental claim for an
employee.

* DENTAL CLAIM ID
EMP ID
COVERAGE TYPE
DATE OF CLAIM
PATIENT NAME
RELATION TO EMPLOYEE
PATIENT SEX
PATIENT DATE OF BIRTH
PATIENT ADDRESS
DENTIST LICENSE NUMBER
DENTIST NAME
DENTIST ADDRESS

LISTS A DP Relationship Relates DENTAL CLAIM to
(dental procedure) DENTAL PROCEDURE.

* DENTAL CLAIM ID
* PROCEDURE ID

DENTAL PROCEDURE Entity Describes the procedures for a

* PROCEDURE ID y ,
PROCEDURE DESCRIPTION the DENTAL CLAIM entity
PROCEDURE FEE because its attributes appeared
SERVICE DATE as repeating elements.

DENTAL
CLAIM

DENTAL
PROCEDURE

6-12 CA-IDMS Database Design



6.4 How to normalize data

6.4.3 Listing data in third normal form

To organize data entities in third normal form, perform the following steps:

1. Remove transitively dependent attributes:

a. Locate any non-key attributes that are facts about another non-key attribute.

b. Remove these attributes and create a new entity.

c. Create a new relationship that relates the new entity to the original entity.

2. Update the E-R diagram to reflect your changes.

Dental claim information in third normal form: The entities and relationships
that describe dental claim information are listed in third normal form in the following

table.

The bold entities and relationships were added to organize the information in third
normal form. Since none of the entities listed contain attributes that are dependent on
part of the primary key, the information shown in this table is also in second normal

form.
Data Entity/ Description
relationship
DENTAL CLAIM Entity Describes a dental claim for an
« DENTAL CLAIM ID employee.
EMP ID
DATE OF CLAIM
LISTS A DP Relationship Relates DENTAL CLAIM to
« DENTAL CLAIM 1D DENTAL PROCEDURE.
* DENTAL PROCEDURE ID
DENTAL PROCEDURE Entity Describes the procedures for a
« DENTAL CLAIM ID pﬁf”"atr.tdmtal g'a'.m;r;'s
* PROCEDURE ID weak enlty was gerved from
PROCEDURE DESCRIPTION the DENTAL CLAIM entity
PROCEDURE FEE because its attributes appeared
SERVICE DATE as repeating elements.
CLAIMS DENT Relationship Relates PATIENT to

* EMP ID
* PATIENT NAME
* DENTAL CLAIM ID

DENTAL CLAIM.

Chapter 6. Normalizing the Data 6-13



6.4 How to normalize data

Data Entity/ Description

relationship
PATIENT Entity Describes a patient who makes
« EMP ID a claim; this entity was

* PATIENT NAME
RELATION TO EMPLOYEE
PATIENT DATE OF BIRTH
PATIENT ADDRESS

derived from the DENTAL
CLAIM entity to avoid transi-
tive dependencies; in second
normal form, the attributes
RELATION TO EMPLOYEE,
PATIENT DATE OF BIRTH,
and PATIENT ADDRESS
were dependent on the
non-key attributes PATIENT
NAME and EMP ID of
DENTAL CLAIM.

DENT CLAIMED FOR Relationship

* DENTAL CLAIM ID
* DENTIST LICENSE NUMBER

Relates DENTIST to
DENTAL CLAIM.

DENTIST Entity

* DENTIST LICENSE NUMBER
DENTIST NAME
DENTIST ADDRESS

Describes the dentist who per-
forms dental work for a
patient; this entity was derived
from the DENTAL CLAIM
entity to avoid transitive
dependencies; in second
normal form, the attributes
DENTIST NAME and
DENTIST ADDRESS were
transitively dependent on the
non-key attributes DENTIST
NAME and DENTIST
ADDRESS of the DENTAL
CLAIM entity.

6-14 CA-IDMS Database Design



6.4 How to normalize data

M

DENTAL
CLAIM

DENTAL
PROCEDURE

M

Chapter 6. Normalizing the Data 6-15



6.5 Normalized data for the Commonweather Corporation

6.5 Normalized data for the Commonweather Corporation

The data entities and relationships for the Commonwesther Corporation are listed in
first, second, and third normal forms in the following tables.

Data entities for Commonweather in first normal form: The bold entities and
relationships were added to organize the information in first normal form. Since none
of the entities listed contain attributes that are dependent on part of the primary key,
the information shown in this table is already in second normal form.

Data Entity/ Description
relationship
OFFICE Entity Describes offices in which

I k.
* OFFICE CODE employees wor

OFFICE ADDRESS
OFFICE SPEED DIAL
OFFICE AREA CODE

CALLS Relationship Relates OFFICE and PHONE.

* OFFICE CODE
* OFFICE PHONE

PHONE Entity Describes office phones; this
entity was derived from the
OFFICE entity because its
attributes appeared as
repeating elements.

* OFFICE PHONE

IS LOCATED Relationship Relates EMPLOY EE and
* OFFICE CODE OFFICE
*= EMP ID
SKILL Entity Describes the skills for each
* SKILL CODE employes
SKILL NAME
SKILL DESCRIPTION
EXPERT IN Relationship Relates SKILL and
« SKILL CODE EMPLOYEE.
*= EMP ID
SKILL LEVEL
DATE ACQUIRED
DEPARTMENT Entity Describes the departments that
« DEPT 1D employees belong to.
DEPT NAME

6-16 CA-IDMS Database Design



6.5 Normalized data for the Commonweather Corporation

Data Entity/ Description
relationship
BELONGS TO Relationship Relates DEPARTMENT and
« DEPT ID EMPLOYEE.
* EMP ID
HEADS Relationship Relates DEPARTMENT and
« DEPT ID EMPLOYEE.
* EMP ID
JoB Entity Describes the jobs employees
« JOB ID perform within the company.
JOB TITLE
JOB DESCRIPTION
REQUIREMENTS
MAX SALARY
MIN SALARY
NUMBER OF POSITIONS
PAYS Relationship Relates JOB and SALARY
« J0B 1D GRADE.
* SALARY GRADE
SALARY GRADE Entity Describes the salary grades for
each job; this weak entity was
* 208 1D derived from JOB because it
* SALARY GRADE erived from ecause Its
GRADE MIN SALARY attributes appeared as
GRADE MAX SALARY repeating elements.
IS POSITIONED Relationship Relates EMPLOY EE and JOB.
* JOB ID
* EMP ID
SALARY
OVERTIME RATE
COMMISSION PERCENT
BONUS PERCENT
START DATE
TERMINATION DATE
PROJECT Entity Describes projects that

* PROJECT CODE
PROJECT DESCRIPTION
EST START DATE
ACT START DATE
EST END DATE
ACT END DATE

employees work on and lead.

Chapter 6. Normalizing the Data 6-17



6.5 Normalized data for the Commonweather Corporation

Data Entity/ Description
relationship
WORKS ON Relationship Relates EMPLOY EE and
* PROJECT CODE PROJECT.
* EMP ID
WO START DATE
WO END DATE
LEADS Relationship Relates EMPLOY EE and
* PROJECT CODE PROJECT
* EMP ID
REPORTS TO Relationship Relates those employees who
are supervisors to other
* WRKR EMP ID
« SUPR EMP ID employees who are workers.
WRKR START DATE
WRKR END DATE
MANAGES Relationship Relates those employees who
are workers to other
* SUPR EMP ID ;
« WRKR EMP ID employees who are supervi-
SUPR START DATE Sors.
SUPR END DATE
EMPLOYEE Entity Describes company employees.
* EMP ID
EMP NAME
SS NUMBER
EMP ADDRESS
EMP HOME PHONE
DATE OF BIRTH
DATE OF HIRE
DATE OF TERMINATION
STATUS
INSURED BY Relationship Relates EMPLOYEE and LIFE
« EMP 1D INS PLAN.
* LIFE PLAN CODE
LIFE INS PLAN Entity Describes a life insurance plan
* LIFE PLAN CODE for each employee.
INSCO NAME
INSCO ADDRESS
INSCO PHONE
PLAN DESCRIPTION
GROUP NUMBER
CHOOSES Relationship Relates EMPLOY EE and
< EMP 1D COVERAGE.

* HEALTH PLAN CODE
* COVERAGE TYPE

6-18 CA-IDMS Database Design



6.5 Normalized data for the Commonweather Corporation

Data

Entity/
relationship

Description

COVERAGE

*
*

Entity

HEALTH PLAN CODE
COVERAGE TYPE
COVERAGE DESCRIPTION
SELECTION DATE
TERMINATION DATE

Describes health coverage for
each employee.

SPECIFIES

*
*

Relationship

HEALTH PLAN CODE
COVERAGE TYPE

Relates COVERAGE and
HEALTH INS PLAN.

HEALTH INS PLAN

*

Entity

HEALTH PLAN CODE
GROUP NUMBER
INSCO NAME

INSCO ADDRESS
INSCO PHONE

PLAN DESCRIPTION

Describes health insurance
plans for employees.

PAYS FOR DENT

*
*
*

Relationship

HEALTH PLAN CODE
COVERAGE TYPE
DENTAL CLAIM ID

Relates COVERAGE and
DENTAL CLAIM.

DENTAL CLAIM

*

Entity

DENTAL CLAIM ID

EMP ID

COVERAGE TYPE

DATE OF CLAIM

PATIENT NAME

RELATION TO EMPLOYEE
PATIENT SEX

PATIENT DATE OF BIRTH
PATIENT ADDRESS
DENTIST LICENSE NUMBER
DENTIST NAME

DENTIST ADDRESS

Describes a dental claim for an
employee; in this example, the
DENTAL CLAIM entity has
an atomic key, DENTAL
CLAIM ID.

LISTS A DP

Relationship

* DENTAL CLAIM ID
* PROCEDURE ID

Relates DENTAL CLAIM and
DENTAL PROCEDURE.

DENTAL PROCEDURE

Entity

* DENTAL CLAIM ID
* PROCEDURE ID

PROCEDURE DESCRIPTION
PROCEDURE FEE
SERVICE DATE

Describes the procedures for a
particular dental claim; this
entity was derived from the
DENTAL CLAIM entity
because its attributes appeared
as repeating elements.

Chapter 6. Normalizing the Data 6-19



6.5 Normalized data for the Commonweather Corporation

Data Entity/
relationship

Description

PAYS FOR HOSP Relationship
* HOSPITAL CLAIM ID

* HEALTH PLAN CODE

* COVERAGE TYPE

Relates COVERAGE and
HOSPITAL CLAIM.

HOSPITAL CLAIM Entity

* HOSPITAL CLAIM ID
EMP ID
COVERAGE TYPE
DATE OF CLAIM
PATIENT NAME
RELATION TO EMPLOYEE
PATIENT SEX
PATIENT DATE OF BIRTH
PATIENT ADDRESS
DIAGNOSIS
HOSPITAL NAME
HOSPITAL ADDRESS
HOSPITAL PHONE
HOSPITAL CHARGES
ADMIT DATE
DISCHARGE DATE

Describes a hospital claim for
an employee.

PAYS FOR PHY Relationship
* HEALTH PLAN CODE

* COVERAGE TYPE

* NON-HOSPITAL CLAIM ID

Relates COVERAGE and
NON-HOSPITAL CLAIM.

NON-HOSPITAL CLAIM Entity

* NON-HOSPITAL CLAIM ID
EMP ID
COVERAGE TYPE
DATE OF CLAIM
PATIENT NAME
RELATION TO EMPLOYEE
PATIENT SEX
PATIENT DATE OF BIRTH
PATIENT ADDRESS
DIAGNOSIS
PHYSICIAN ID
PHYSICIAN NAME
PHYSICIAN ADDRESS
NUMBER OF NON-HOSP

PROCEDURES

PHYSICIAN CHARGES

Describes a non-hospital claim
for an employee.

LISTS A NHP Relationship
* NON-HOSPITAL CLAIM ID
* NON-HOSPITAL

PROCEDURE ID

Relates NON-HOSPITAL
CLAIM and NON-HOSPITAL
PROCEDURE.

6-20 CA-IDMS Database Design



6.5 Normalized data for the Commonweather Corporation

Data Entity/ Description
relationship
NON-HOSPITAL PROCEDURE Entity Describes the procedures for a

* NON-HOSPITAL CLAIM ID

* PROCEDURE ID
PROCEDURE DESCRIPTION
PROCEDURE FEE
SERVICE DATE

particular hospital claim; this
weak entity was derived from
the NON-HOSPITAL CLAIM
entity because its attributes
appeared as repeating ele-
ments.

Chapter 6. Normalizing the Data 6-21



6.5 Normalized data for the Commonweather Corporation

Data structure diagram showing Commonweather entities in first normal
form:

M
M
DEPARTMENT
1 1
1
OFFICE

SKILL
LIFE INSURANCE
PLAN

PROJECT

HEALTH
INSURANGL PLAN

NON-HOSPITAL
CLAIM

1

HOSPITAL
CLAIM

T a7

6-22 CA-IDMS Database Design



6.5 Normalized data for the Commonweather Corporation

Data entities for Commonweather in second normal form: No changes were
made to organize the information in second normal form.

SALARY
GRADE
M

DEPARTMENT

LIFE INSURANCE
PLAN

HEALTH
INSURANCL PLAN

NON-HOSPITAL
CLAIM

1

<&E>

M

NON-HOSP DENTAL
PROCEDURE PROCEDURE

CLAIM

‘ HOSPITAL ‘

Data entities for Commonweather in third normal form: The bold entities and
relationships were added to organize the information in third normal form.

Data Entity/ Description
relationship
OFFICE Entity Describes the offices

employees work in.
« OFFICE CODE Ployees work |

OFFICE ADDRESS
OFFICE SPEED DIAL
OFFICE AREA CODE

Chapter 6. Normalizing the Data 6-23



6.5 Normalized data for the Commonweather Corporation

Data Entity/ Description
relationship
CALLS Relationship Relates OFFICE and PHONE.
* QFFICE CODE
* OFFICE PHONE
PHONE Entity Describes office phones; this
entity was derived from the
* OFFICE PHONE OFFICE entity because its
attributes appeared as
repeating elements.
IS LOCATED Relationship Relates EMPLOY EE and
* OFFICE CODE OFFICE.
* EMP ID
SKILL Entity Describes skills for each
* SKILL CODE employee
SKILL NAME
SKILL DESCRIPTION
EXPERT IN Relationship Relates SKILL and
« SKILL CODE EMPLOYEE.
* EMP ID
SKILL LEVEL
DATE ACQUIRED
DEPARTMENT Entity Describes departments in
« DEPT ID which employees work.
DEPT NAME
BELONGS TO Relationship Relates DEPARTMENT and
« DEPT 1D EMPLOYEE.
* EMP ID
HEADS Relationship Relates DEPARTMENT and
« DEPT ID EMPLOYEE.
* EMP ID
JOB Entity Describes the jobs employees
« J0B 1D perform within the company.
JOB TITLE
JOB DESCRIPTION
REQUIREMENTS
MAX SALARY
MIN SALARY

NUMBER OF POSITIONS

6-24 CA-IDMS Database Design



6.5 Normalized data for the Commonweather Corporation

Data Entity/ Description
relationship
PAYS Relationship Relates JOB and SALARY
« JOB ID GRADE.
* SALARY GRADE
SALARY GRADE Entity Describes salary grades for
each job; this entity was
* 08 ID deivea from the JOB entit
* SALARY GRADE erived from the enlity
GRADE MIN SALARY because |lts attributes appeared
GRADE MAX SALARY as repeating elements.
IS POSITIONED Relationship Relates JOB and EMPLOY EE.
* JOB ID
* EMP ID
SALARY
OVERTIME RATE
COMMISSION PERCENT
BONUS PERCENT
START DATE
TERMINATION DATE
PROJECT Entity Describes the projects that
« PROJECT CODE employees work on.
PROJECT DESCRIPTION
EST START DATE
ACT START DATE
EST END DATE
ACT END DATE
WORKS ON Relationship Relates EMPLOY EE and
* PROJECT CODE PROJECT.
* EMP ID
WO START DATE
WO END DATE
LEADS Relationship Relates EMPLOYEE and
* PROJECT CODE PROJECT.
* EMP ID
REPORTS TO Relationship Relates those employees who
« WRKR EMP ID are Tuperwso;s to otherk
+ SUPR EMP ID employees who are workers.
WRKR START DATE
WRKR END DATE
MANAGES Relationship Relates those employees who
« SUPR EMP ID are \:vorkers tg other _
+ WRKR EMP ID employees who are supervi-

SUPR START DATE
SUPR END DATE

SOrs.

Chapter 6. Normalizing the Data 6-25



6.5 Normalized data for the Commonweather Corporation

Data Entity/ Description
relationship
EMPLOYEE Entity Describes company employees.
* EMP ID
EMP NAME
SS NUMBER

EMP ADDRESS

EMP HOME PHONE
DATE OF BIRTH

DATE OF HIRE

DATE OF TERMINATION

STATUS
INSURED BY Relationship Relates EMPLOYEE and LIFE
« EMP 1D INS PLAN.
= LIFE PLAN CODE
LIFE INS PLAN Entity Describes the life insurance

* LIFE PLAN CODE plan for each employee.

PLAN DESCRIPTION
GROUP NUMBER

CHOOSES Relationship Relates EMPLOY EE and
COVERAGE.

* EMP ID
* HEALTH PLAN CODE
* COVERAGE TYPE

COVERAGE Entity Describes the health coverage
chosen by each employee.

* HEALTH PLAN CODE
* COVERAGE TYPE
COVERAGE DESCRIPTION

SPECIFIES Relationship Relates HEALTH INS PLAN
and COVERAGE.

* HEALTH PLAN CODE
* COVERAGE TYPE

HEALTH INS PLAN Entity Describes the health insurance
for each employee.

* HEALTH PLAN CODE
GROUP NUMBER
PLAN DESCRIPTION

PROVIDES LIP Relationship Relates INS CO and LIFE INS
PLAN.

* LIFE PLAN CODE
* INSCO NAME

PROVIDES HIP Relationship Relates INS CO and HEALTH
INS PLAN.

* HEALTH PLAN CODE
* INSCO NAME

6-26 CA-IDMS Database Design



6.5 Normalized data for the Commonweather Corporation

Data Entity/ Description

relationship

INS CO Entity Describes insurance compa-

nies; this entity was derived

* INSCO NAME
INSCO ADDRESS from the LIFE INS PLAN .and
INSCO PHONE HEALTH INS PLAN entities

to avoid transitive dependen-
cies; in second normal form,
the attributes INSCO
ADDRESS and INSCO
PHONE were transitively
dependent on the non-key
attribute INSCO NAME.

PAYS FOR DENT Relationship Relates COVERAGE and

* HEALTH PLAN CODE DENTAL CLAIM.

* COVERAGE TYPE

+* DENTAL CLAIM ID

DENTAL CLAIM Entity Describes a dental claim for an

employee; in this example, the

* DENTAL CLAIM ID .

DATE OF CLAIM DENTA_L CLAIM entity has
an atomic key, DENTAL
CLAIM ID.

LISTS A DP Relationship Relates DENTAL CLAIM and

« DENTAL CLAIM ID DENTAL PROCEDURE.

* PROCEDURE ID

DENTAL PROCEDURE Entity Describes the procedures for a

particular dental claim; this

* DENTAL CLAIM ID . .

+ PROCEDURE 1D entity was derived from the
PROCEDURE DESCRIPTION DENTAL CLAIM entity
PROCEDURE FEE because its attributes appeared
SERVICE DATE as repeating elements.

DENT CLAIMED FOR Relationship Relates DENTIST and

* DENTAL CLAIM ID
* DENTIST LICENSE NUMBER

DENTAL CLAIM.

Chapter 6. Normalizing the Data 6-27



6.5 Normalized data for the Commonweather Corporation

Data Entity/ Description
relationship
DENTIST Entity Describes the dentist who per-

+ DENTIST LICENSE NUMBER f‘;f“ef! ?ﬁ."ta' ‘t’f’tork for da e
DENTIST NAME patient; this entity was deriv

DENTIST ADDRESS from the DENTAL CLAIM

DENTIST PHONE entity to avoid transitive
dependencies; in second
normal form, the attributes
DENTIST NAME and
DENTIST ADDRESS were
transitively dependent on the
non-key attributes DENTIST
NAME and DENTIST
ADDRESS of the DENTAL
CLAIM entity.

CLAIMS DENT Relationship Relates PATIENT and

DENTAL CLAIM.
* DENTAL CLAIM ID c

* PATIENT NAME
* EMP ID

PAYS FOR HOSP Relationship Relates COVERAGE and

* HOSPITAL CLAIM ID HOSPITAL CLAIM.

* HEALTH PLAN CODE
* COVERAGE TYPE

HOSPITAL CLAIM Entity Describes a hospital claim for

* HOSPITAL CLAIM ID an employee.
EMP ID
COVERAGE TYPE
DATE OF CLAIM
HOSPITAL CHARGES
ADMIT DATE
DISCHARGE DATE
DIAGNOSIS

HOSP CLAIMED FOR Relationship Relates HOSPITAL CLAIM

* HOSPITAL CLAIM ID and HOSPITAL.

* HOSPITAL NAME

6-28 CA-IDMS Database Design



6.5 Normalized data for the Commonweather Corporation

Data Entity/ Description

relationship

HOSPITAL Entity Describes the hospital in

which a patient was treated;

* HOSPITAL NAME . . .

HOSPITAL ADDRESS this entity was derived from.

HOSPITAL PHONE the HOSPITAL CLAIM entity
to avoid transitive dependen-
cies; in second normal form,
the attributes HOSPITAL
ADDRESS and HOSPITAL
PHONE were transitively
dependent on the non-key
attribute HOSPITAL NAME
of the HOSPITAL CLAIM
entity.

CLAIMS HOSP Relationship Relates PATIENT and HOS-

* HOSPITAL CLAIM ID PITAL CLAIM.

* PATIENT NAME

* EMP ID

PAYS FOR PHY Relationship Relates COVERAGE and

« HEALTH PLAN CODE NON-HOSPITAL CLAIM.

* COVERAGE TYPE

* NON-HOSPITAL CLAIM ID

NON-HOSPITAL CLAIM Entity Describes a non-hospital claim

« NON-HOSPITAL CLAIM ID for an employee.

DATE OF CLAIM
DIAGNOSIS
LISTS A NHP Relationship Relates NON-HOSPITAL
CLAIM and NON-HOSPITAL

« NON-HOSPITAL CLAIM ID ROCEDURE

* PROCEDURE ID )

NON-HOSPITAL PROCEDURE Entity Describes the procedures for a

particular non-hospital claim;

* NON-HOSPITAL CLAIM ID . . .

+ PROCEDURE ID this entity was derived from
PROCEDURE DESCRIPTION the NON-HOSPITAL CLAIM
PROCEDURE FEE entity because its attributes
SERVICE DATE appeared as repesting ele-

ments.

PHYS CLAIMED FOR Relationship Relates NON-HOSPITAL

* NON-HOSPITAL CLAIM ID
* PHYSICIAN ID

CLAIM and PHYSICIAN.

Chapter 6. Normalizing the Data 6-29



6.5 Normalized data for the Commonweather Corporation

Data Entity/ Description
relationship
PHYSICIAN Entity Describes a physician who
« PHYSICIAN ID performed a service for a
PHYSICIAN NAME patient; this entity was derived
PHYSICIAN ADDRESS from the NON-HOSPITAL
PHYSICIAN PHONE CLAIM entity to avoid transi-

tive dependencies; in second
normal form, the attributes
PHYSICIAN NAME, PHY SI-
CIAN ADDRESS, and PHY -
SICIAN PHONE were
transitively dependent on the
non-key attribute PHY SICIAN
ID of the NON-HOSPITAL
CLAIM entity.

CLAIMS NHOSP Relationship Relates NON-HOSPITAL
CLAIM and PATIENT.

* NON-HOSPITAL CLAIM ID
* PATIENT NAME

* EMP ID
PATIENT Entity Describes a patient who makes
a claim; this entity was

* EMP ID .

« PATIENT NAME derived from the DENTAL
RELATION TO EMPLOYEE CLAIM, HOSPITAL CLAIM,
PATIENT SEX and NON-HOSPITAL CLAIM
PATIENT DATE OF BIRTH entities to avoid transitive

normal form, the attributes
RELATION TO EMPLOYEE,
PATIENT SEX, PATIENT
DATE OF BIRTH, and
PATIENT ADDRESS were
transitively dependent on the
non-key attributes PATIENT
NAME and EMP ID of the
DENTAL CLAIM entity;
PATIENT is a weak entity
related to EMPLOYEE.

6-30 CA-IDMS Database Design



6.5 Normalized data for the Commonweather Corporation

Data structure diagram showing Commonweather entities in third normal
form:

SALARY
GRADE

DEPARTMENT

PROJECT

|INSURANGE PLAN

1 ¥

M

NON-HOSP
PROCEDURE

PROCEDURE

| DENTAL |

Chapter 6. Normalizing the Data 6-31



6-32 CA-IDMS Database Design



Chapter 7. Validating the Logical Design

7.1 OVEIVIEW . . . . e 7-3

Chapter 7. Validating the Logical Design 7-1



7-2 CA-IDMS Database Design



7.1 Overview

7.1 Overview

The final test of alogical design is whether it provides all the information needed for
application processing. To verify that your logical database design is complete, you

therefore need to simulate the flow through the database of each business processing

function.

Tracing the access path: An access path shows the order in which data entities
and their attributes are retrieved in the course of application processing. By tracing
the access path of each general and specific business function, you can determine
whether the database will support the processing needs of your organization. For
clarity and readability, you need to draw a separate access path diagram for each busi-
ness function.

Perform the following steps for each function:

1. Identify the entry point for the function. The entry point for a function is the
first entity that it accesses in the database. You can determine the entry point for
a function by analyzing the description of the function. (See Chapter 3, “Ana
lyzing the Business System” on page 3-1.) From the description of a particular
function, you need to determine the most direct way to carry out the function.

2. ldentify all entities and relationships that must be accessed. First make a list
of all attributes required by the application. Then identify the entities and
relationships that contain those attributes.

3. Trace the direction of data flow. To distinguish the direction of data flow from
those lines that represent data relationships, you need to draw dotted lines to indi-
cate the flow:

a. Draw a dotted line from outside the diagram to the entry-point entity.

b. Draw a dotted line through all entities and relationships that must be accessed.
Do not be concerned about what keys might be necessary to move from one
entity type to another. Retrieve an entity only if it has the attributes that you
need to display or modify in some way.

c¢. Indicate the direction of data flow by drawing an arrow at the end of each
dotted line.

4. Determine the type of access. Indicate on the access path diagram the type of
access for each entity or relationship:

= R— Read
» C — Change
n A—Add
» D — Delete

Sample access path diagram: The following diagram shows illustrates a sample
access path diagram for a general business function and its specific transactions.

Chapter 7. Validating the Logical Design 7-3



7.1 Overview

4 EMPLOYEE — — — SKILL

As you trace the flow of each function, you may find that a particular application
requires data that is not documented in the logical design. In the event that this
happens, you need to make changes to the design to include this data. Once you have
determined that the design contains all necessary data, you are prepared to develop a
physical model for the database.

7-4 CA-IDMS Database Design



Chapter 8. Introduction to Physical Design

81 OVEIVIEW . . . e 8-3
8.2 Datastructurediagram . . . . . . ... 8-4
8.3 Stepsin the physical database design process . . . . . . . . ... ... 8-5
8.4 Physical database structures . . . . ... 8-6
8.5 SQL and non-SQL definitions . . . . .. .. ... ... 8-8

Chapter 8. Introduction to Physical Design 8-1



8-2 CA-IDMS Database Design



8.1 Overview

8.1 Overview

The database designer is responsible for efficient access to the database no matter how
that database is implemented. This means that a complete logical and physical data-
base design must take place prior to implementation.

In the first seven chapters, you worked through the process for creating a logical data-
base design based on business functions and rules. You are now ready to make phys-
ical design decisions.

What is physical database design?: Physica database design is the process of
tailoring the logical model to specific application performance requirements. During
this phase of database design, you need to plan the best use of computer storage
resources and provide for the most efficient data access.

At the conclusion of the logical design process, you should have documentation that
represents the data model required to support the organization's information resource.
As aresult of normalization, you should also have an organized list of data entities.
With these resources, you are prepared to make intelligent decisions about how to opti-
mize database performance. This is the physical database design process.

Chapter 8. Introduction to Physical Design 8-3



8.2 Data structure diagram

8.2 Data structure diagram

The physical design process involves creating a diagram that serves as a model of the
physical database. This diagram, known as a data structure diagram, visualy repres-
ents the way data entities are related physically just as the entity-relationship diagram
represents the way data entities are related logically. The data structure diagram also
describes the storage characteristics of the data. Chapters 9 through 13 of this manual
show you how to create a data structure diagram.

8-4 CA-IDMS Database Design



8.3 Steps in the physical database design process

8.3 Steps in the physical database design process

The physical database design process involves creating a base physical design followed
by refinements based on the implementation choice. The physical database design
process involves the following steps:

1

o o &~ W D

Create a preliminary data structure diagram based on the logical database design
Identify application performance requirements

Assign location modes

Evaluate and refine the physical database design

Choose physical tuning options

Minimize contention among transactions

Chapter 8. Introduction to Physical Design 8-5



8.4 Physical database structures

8.4 Physical database structures

Once you have created your design, you perform the necessary calculations to deter-
mine the amount of space required by your database, and then implement the database
design using SQL or non-SQL data definition statements.

»» For further information on sizing the database, see Chapter 15, “Determining the
Size of the Database” on page 15-1. For further information on implementing the
design, see Chapter 16, “Implementing Your Design” on page 16-1.

No matter how you choose to define the database, certain physical database structures
are used by IDMS/DB to implement your design.

»» For further information on CA-IDMS/DB physical database concepts, see CA-IDMS
Concepts and Facilities and CA-IDMS Database Administration.

Areas and pages: CA-IDMS/DB subdivides the physical database into separate
areas, each consisting of a set of contiguously numbered pages.

Aresas are stored in operating system files; each page corresponding to one or more
direct access blocks. CA-IDMS/DB usualy transfers an entire page of datain a single
input/output operation.

While some database pages are reserved for space management, the majority of pages

are used to hold user data in the form of entity occurrences. Each entity occurrence

corresponds to a single row of an SQL-defined table or an instance of a record defined
by a non-SQL schema.

A page can contain as many entity occurrences as space availability permits.

Segments: A segment defines the areas and files that contain the data in the data-
base. A segment represents a physical database usually defined by a single schema.
For CA-IDMS/DB to access the segment at runtime, the segment must be included in
the definition of a DMCL.

DMCL: A DMCL is a collection of segment definitions that can be accessed in a
single execution of CA-IDMS/DB. The DMCL aso specifies buffer characteristics,
describes the buffer and files for journaling database activity, and identifies a database
name table which CA-IDMS/DB uses at runtime to map a logical (or schema) defi-
nition of the database to specific segments.

A DMCL exists as a load module in a load (core-image) library and is used at runtime
to determine where data required by an application is physically stored.

»> For more information on segments and the DMCL, see CA-IDMS Database
Administration.

8-6 CA-IDMS Database Design



8.4 Physical database structures

Database keys: CA-IDMSDB assigns a database key (db-key) to each record
occurrence when it is entered into the database. The database key is the concatenation
of the number of the page on which a record occurrence is stored, and a line number.
A line number is an index to an eight-byte structure called a line index. The line
index is used to locate the record occurrence within the page. The database key
uniquely identifies the record with which it is associated and never changes as long as
the record remains in the database.

Structure of the physical database: The diagram below shows how areas,
pages, and entity occurrences appear in the database.

The EMPDATA database area contains four pages and five entity occurrences. Each
of the entity occurrences is uniquely identified by a database key. For example, the
database key for the Mary Bliss occurrence is 1001:1.

EMPDATA area

Page 1000 Page 1001 Page 1002 Page 1003

John Smith Mary Bliss John Case
Line 1 Line 1 Line 2

Henry Jones Janet Brown
Line 2 Line 1

Chapter 8. Introduction to Physical Design 8-7



8.5 SQL and non-SQL definitions

8.5 SQL and non-SQL definitions

In CA-IDMS, you have the choice of implementing your database design with either
SQL or non-SQL definition statements. The choice of which definition language to
use is based on the specific needs of your application.

Most of the physical design process is the same, regardless of which language is
chosen. In those few areas of design implementation where the options differ for SQL
and non-SQL, those options are clearly noted in this manual.

Likewise, there are some variances in the terminology used with each of the imple-
mentation languages. The accompanying table outlines sets of equivalent terminology.

Table of terms:

L ogical/physical design SQL terminology Non-SQL terminology

terminology

Entity Table Record type

Entity occurrence Row Record occurrence

Data element Column Field/element

CALC location mode CALC location mode CALC location mode

Clustered location mode Clustered location VIA location mode
mode

Parent Referenced table Owner

Child Referencing table Member

Relationship Referential constraint Set

Index Index Index

8-8 CA-IDMS Database Design



Chapter 9. Creating a Preliminary Data Structure
Diagram

9.1 Developing a data structure diagram . . . . . ... ... 9-3
9.1.1 Representing entities . . . . . . . ... ... ... 9-3
9.1.1.1 Representing relationships as entities . . . . . . ... ... ... .. 9-3

9.1.2 Representing relationships between entities . . . . . . .. ... ... .. 9-7
9.1.3 Estimating entity lengths . . . . . . . ... 9-8
9.2 Preliminary data structure diagram for Commonweather Corporation . . . 9-10

Chapter 9. Creating a Preliminary Data Structure Diagram 9-1



9-2 CA-IDMS Database Design



9.1 Developing a data structure diagram

9.1 Developing a data structure diagram

To derive a preliminary data structure diagram from an entity-relationship diagram,
you need to:

1. Represent entities
2. Represent relationships between entities
3. Estimate entity length (size of entities)

Follow the steps described below to create a preliminary data structure diagram for
your database.

9.1.1 Representing entities

Entities: Each entity in the logical database design is represented by an entity on the
preliminary data structure diagram as shown below.

OFFICE

Each attribute identified during the logical database design process becomes a data
element in the physical design. The names you used in the logical database design are
also used in the physical design process.

9.1.1.1 Representing relationships as entities

Certain relationships defined during the logical design process should be represented as
entities in the preliminary data structure diagram. These include:

»  Relationships carrying non-key data

. Many-to-many relationships
Another type of relationship, the self-referencing relationship, may become a separate

entity in the preliminary data structure diagram or may carry the key to the relation-
ship as a foreign key.

Each of these types of relationships is discussed below.

Chapter 9. Creating a Preliminary Data Structure Diagram 9-3



9.1 Developing a data structure diagram

Relationships carrying non-key data: While most data relationships defined in
the logical design contain only foreign keys, some carry both keys and non-key data.
Relationships that contain non-key data must be represented as entities as you continue
with the physical database design.

For example, because the relationship 1S POSITIONED IN carries both keys and
non-key data, it must be represented as an entity. Give this new entity an appropriate
name.

EMPQSITION
1S Becomes | | |
POSITIONED > |
IN
Keys Non-key data
JOB ID SALARY
EMP ID OVERTIME RATE

COMMISSION PERCENT
BONUS PERCENT
START DATE
TERMINATION DATE

However, the relationship IS LOCATED should not be represented as an entity
because it contains only key information:

OFFICE CODE (key)
EMP ID (key)

Many-to-many relationships: In aphysica database design, you establish con-
nections between related entities through one-to-many or one-to-one relationships.
Each many-to-many relationship defined in the logical design must be converted to
two one-to-many relationships. To make this change, you need to represent each
many-to-many relationship as an entity, whether it contains non-key data or not.
When you derive an entity from a many-to-many relationship, you create two one-to-
many relationships, as shown below.

9-4 CA-IDMS Database Design



9.1 Developing a data structure diagram

In the Commonweather Corporation, an employee can possess as many as five skills
and a specific skill can be held by many employees. This situation establishes a
many-to-many relationship between the SKILL and EMPLOY EE entities. Before you
implement such a relationship under CA-IDMS/DB, you must first create a new entity.

By replacing the many-to-many relationship between EMPLOY EE and SKILL with a
new entity, you create two one-to-many relationships:

= A one-to-many relationship is created between EMPLOY EE and the entity
EXPERTISE.

®  Another one-to-many relationship is created between SKILL and EXPERTISE.

Name the new entities appropriately.

EMPLOYEE 1 M EXPERTISE M SKI 1

Pl [T 1

Self-referencing relationships: A sdf-referencing relationship alows users to
combine information from different occurrences of the same entity. For example, to
relate different employees in a company, an application program might combine data
from different occurrences of the EMPLOY EE entity. A CA-IDMS/DB user can then
show employees and the managers they report to.

You may find more than one self-referencing relationship on a particular entity. If the
relationships use the same keys, they are probably mirror images of each other. For
example, MANAGES and REPORTS TO are two side of the same coin. Since they
both use the same key and carry the same data, they are really one relationship.

EMPLOYEE EMPLOYEE

1 M

Manages,

-
X
o
@)
e
o
A
S

REPORTS
TO

Replace the self-referencing relationship with an entity if any of the following are true:

n |f the self-referencing relationship carries data (for example, the date that the
employee began to work for this manager)

Chapter 9. Creating a Preliminary Data Structure Diagram 9-5



9.1 Developing a data structure diagram

» |f you want to carry historical information (such as, what managers an employee
has had)

n |If the self-referencing relationship is a many-to-many relationship

Replace the self-referencing relationship with an entity, specifying two relationships
between the original entity and the new entity. These relationships can be one-to-
many or one-to-one, depending on the logic behind them.

The following diagram shows how you might resolve a self-referencing relationship
into an entity having two relationships with the primary entity: one one-to-many
relationship and one one-to-one relationship. The new entity contains further informa-
tion about the relationship between manager and employees.

EMPLOYEE

(MANAGES) —
(0L $140d3y) ~

M

-

STRUCTURE

If none of the above conditions apply, you can represent the relationship ssimply using
aforeign key. In this case, the key of the manager would be carried as a foreign key
in the EMPLOY EE entity. This approach will require fewer storage resources and
therefore is recommended in those situations where it can be used.

EMPLOYEE

(MANAGES-REPORTS TO)

9-6 CA-IDMS Database Design



9.1 Developing a data structure diagram

9.1.2 Representing relationships between entities

In the logical design process, you represented relationships between entities with dia-
monds and identified the keys associated with the relationship.

During the previous step ("Representing entities'), you changed each many-to-many
relationship to two one-to-many relationships by creating a new entity. All relation-
ships between entities should now fall into only two categories:

®  One-to-many relationships

= One-to-one relationships
Representing the relationships: To represent the relationships in the preliminary
data structure diagram, perform the following steps:

1. For each relationship, draw a line between the related entities.

2. For each one-to-many relationship, place an arrow on the line between the
entities to identify the "many" side of the relationship.

3. For each one-to-one relationship, do not draw an arrow on the line between
the entities.

4. Name the relationship. Usually the name is a concatenation of the two entities it
relates.

For example the relationship between OFFICE and EMPLOY EE could be called
OFFICE-EMPLOY EE and the relationship between SKILL and EXPERTISE
could be called SKILL-EXPERTISE.

5. Indicate the foreign key
The foreign key will be shown as part of the definition of the relationship.

Foreign keys in a one-to-many relationship: In a one-to-many relationship, the
key of the one entity is carried as a foreign key in the many entity.

For example, in the relationship between the entities OFFICE and EMPLOY EE, the
key for the OFFICE entity (the one entity) is carried as a foreign key in the
EMPLOQOY EE entity (the many entity).

Add the foreign key to the list of data elements associated with the appropriate
entity and indicate each foreign key on the data structure diagram, as described below:

1. Under the relationship name, indicate the foreign key used in the relationship .

For example, specify OFFICE CODE under the OFFICE-EMPLOY EE relationship
to indicate that the data element OFFICE CODE is a foreign key for that relation-
ship.

2. Rename foreign keys used to establish self-referencing relationships. Like any

other entity that was originally a logical relationship, the entity used to define a
self-referencing relationship carries as foreign keys the keys from each of the enti-

Chapter 9. Creating a Preliminary Data Structure Diagram 9-7



9.1 Developing a data structure diagram

tiesit relates. However, in this type of relationship, the two foreign keys must be
derived from the same entity, EMPLOY EE.

To avoid having two data elements with the same name (EMP ID) as keys to the
entity, assign unique names to the foreign keys. For example, you might name the
keys MGR ID and EMP ID to distinguish managers from workers.

Note: The foreign key in a self-referencing relationship must be nullable. If it were
not nullable, the first piece of data stored could not satisfy the referential integ-
rity of the relationship. For example, the first employee stored would carry a
manager 1D that would not match an existing employee ID, as the integrity of
the relationship requires. If the self-referencing relationship carries data, that
data must also be nullable.

Foreign keys in a one-to-one relationship: In a one-to-one relationship, the
foreign key can be placed in either entity participating in the relationship. Usually,
you can conserve space by placing the foreign key in one of the two entities. For
example, if there is a relationship between DEPARTMENT and EMPLOYEE to indi-
cate which employee is head of a department, you can conserve space by placing the
EMP ID of the head of the department in the DEPARTMENT entity rather than the
other way around since there will typically be far more employees than departments.

Diagramming relationships between entities: The diagram below shows a
portion of the data structure diagram for Commonweather after your changes have

been made.
DEPARTMENT OFFICE
[T 1 [T T
| [
JOB SKILL
[T T DEPT-EMPLOYEE | | DEPT-HEAD | OFFICE-EMPLOYEE [T T
[ FK (DEPT 1D} FK (EMP ID) | FK (OFFICE CODE) [
JOB-EMPOSITION SKILL-EXPERTISE
FK (JOB ID) FK (SKILL ID)
EMPOSITION EMPLOYEE EXPERTISE
[T T [T 1T [T 1
[ EMP-EMPOSITION [ EMP-EXPERTISE [
FK (EMP ID) FK {EMP ID)

9.1.3 Estimating entity lengths

Once the entity types have been identified, you should estimate the length of each
entity. To calculate each entity's length, add up the length of the data elements con-
tained in the entity. Don't forget to include foreign keys residing in that entity. If the
entity has a variable length, estimate the maximum possible length of the entity.

9-8 CA-IDMS Database Design



9.1 Developing a data structure diagram

Although the lengths of entities may change as you refine the physical design, it is
useful to have an estimate of the size of an entity during the design process.

Indicating the length: Once you have determined the length of a particular data-
base entity, you can indicate this information in the data structure diagram. The
example below shows the OFFICE entity with a length of 55.

OFFIGE
| [ss |

Chapter 9. Creating a Preliminary Data Structure Diagram 9-9



9.2 Preliminary data structure diagram for Commonweather Corporation

9.2 Preliminary data structure diagram for Commonweather
Corporation

Below is the preliminary data structure diagram for Commonweather Corporation. It
represents entities, relationships, foreign keys, and estimated entity lengths.

SALARY GRADE PHONE
OFFICE-PHONE
| |2El | | FK (OFFICE CODE) | |10 |
OB SALARY DEPARTMENT OFFICE
FK (JOB ID) [ [53 ] [ 55 ]
JOB | SKILL
[ [e8s] ECH
| DEPT-EMPLOYEE DEPT-HEAD | QFFIGE-EMPLOYEE
FK (DEPT 10} FK (EMF D) FK {OFFICE CODE)
JOB-EMPOSITION SKII 1 -EXPERTISE
FK {(JOB ID) FK (SKILL GODE)
EMPOSITION EMP-EMPOSITION [ \p| OvEE EMPEXPERTISE ™ Fy prpTISE
FK (EMP ID) FK (EMP ID)
HER [ [rze] ECH
| EMP-PRCQJECT
FK {(EMP 1D}
PROJECT MANAGES-REPORTS-TG | LIFE INS PLAN
| |73 | FK (SUPR EMP ID) | |90 |
EMP-WORKER
| FK {EMP ID) |
LIFE-PLAN
FK {(LIFE PLAN CODE) INSCO-LIP
PROJECT-WORKER WORKER FK (INSCO NAME)
FK (PRQJECT CODE) [ T20 ]
EMP-COVERAGE INS CO
FK (EMP 1D} [ Tio1]
COVERAGE HIP-COVERAGE INSCO-HIP
| | 50 | FK (HEALTH FK (INSCO NAME)
COVERAGE-NHC PI AN CODE)
FK (EMP ID) HEALTH INS PLAN
COVERAGE-DC | | 90 |
COVERAGE-HC FK (EMP D)
FK (EMP ID)
NON-HOSPITAL CLAIM HOSPITAL CLAIM
[ [167] [ Troe]
[ [ DENTAL CLAIM
[ |
HOSPITAL-HC
NHOCLAIM-PROG FK (HOSPITAL NAME)
FK (NON-HOSPITAL PHYSICIAN-NHC DCLAIM-PROC
CLAIM ID) FK (PHYSICIAN 1D} HOSPITAL FI (DENTAI CI AIM D)
71
INON-HOSP PROCEDURE L | [ DENTAL PROCEDURE
[ es] PATIENT-NHC NEN
FK (PATIENT NAME)
PATIENT-HC DENTIST-DC
FK {PATIENT NAME) FK (DENTIST LICENSE
NUMBER)
PHYSICIAN PATIENT DENTIST
[ [77 ] [ [os ] [ [77 ]

9-10 CA-IDMS Database Design



Chapter 10. Identifying Application Performance

Requirements
10.1 Overview . . . . . 10-3
10.2 Establishing performance requirements for transactions . . . . . . .. .. 10-5
10.3 Prioritizing transactions . . . . . . ... 10-6
10.4 Determining how often transactions will be executed . . . . . . . . . .. 10-7
10.5 ldentifying access requirements . . . . . ... L 10-8
10.6 Determining the database entry point and access key for each transaction ~ 10-9
10.7 Projecting growth patterns . . . . . . . . ... 10-10
10.8 Determining the number of entities in each relationship . . . . . . . . .. 10-12
10.9 Determining how often each entity will beaccessed . . . . . .. . . . .. 10-13

Chapter 10. Identifying Application Performance Requirements 10-1



10-2 CA-IDMS Database Design



10.1 Overview

10.1 Overview

After creating the preliminary data structure diagram, you need to interview company
employees who can help you determine the application requirements for the database
so that you can refine that database structure.

Performance and storage requirements: As you gather information from users,
you need to identify both the performance and storage requirements of the system:

»  Establish performance requirements for transactions

® Prioritize transactions

®  Determine how often each transaction will be executed

® |dentify access requirements for each transaction

»  Determine the database entry point and access key for each transaction

»  Project growth patterns

» Determine the number of entity occurrences in each relationship

»  Determine how often each database entity will be accessed
The requirements of the system determine how you should design the physical data-

base model. For example, the requirements of a particular application can help you to
define the page size for a database area.

Making design decisions: You will use the information that you gather at this
stage in the physical design process to make several design decisions later on, as
shown below.

Information gathered in this Used in...
chapter

»  Performance requirements Refining the Physical Design (Chapter 12)
for transactions

®  Transaction priorities
® Access requirements

»  Database entry points and
access keys

= How often each transaction Minimizing Contention Among Transactions
will be executed (Chapter 14)

= How often each entity will
be accessed

Chapter 10. Identifying Application Performance Requirements 10-3



10.1 Overview

Information gathered in this Used in...
chapter
®  Projected growth patterns Determining the Size of the Database (Chapter 15)

= Number of entity occur-
rences in each relationship

10-4 CA-IDMS Database Design



10.2 Establishing performance requirements for transactions

10.2 Establishing performance requirements for
transactions

Employees depend on fast computer turnaround to accomplish their day-to-day work.
To ensure satisfactory turnaround time, you should establish performance requirements
for the system.

Since company personnel have varying information requirements, you need to define
separate performance requirements for each transaction. While some transactions
perform high-volume, routine processing, such as payroll, inventory and budgets,
others enable end users to make ad hoc requests for information.

Company personnel measure the efficiency of a transaction by the amount of work it
can perform and the amount of time it requires to perform the work. If you help
employees to define realistic expectations of transaction performance, you can set per-
formance requirements for the system that will be acceptable to the user community.

Processing modes: For each transaction, select a mode of computer processing
that meets the needs of users without degrading system performance. For example,
you might decide to execute a high-volume processing task as a batch job, while
allowing end users to make ad hoc requests for data through an online application.

Once the processing mode has been established, define appropriate performance
requirements for the transaction. Y our requirements will vary depending on the mode
of processing: while a 12-hour turnaround time might be acceptable for a large batch
program, a five-minute response time will be unsatisfactory for an online application.

Sample transactions: The following table shows performance requirements for
three sample transactions at the Commonweather Corporation.

Transaction Processing Time
mode

Add or delete a claim Online 3 seconds

List employees for an Batch 15 minutes

office

Show salary grade for Online 6 seconds

all jobs

Considerations: Your requirements should take into consideration the resources
available with the computer system. If the resources are not adequate to meet the
established performance requirements, you will need to modify the expectations of the
user community or acquire additional resources.

Chapter 10. Identifying Application Performance Requirements 10-5



10.3 Prioritizing transactions

10.3 Prioritizing transactions

Every data processing department must prioritize requests for transactions. For
example, when a high-level executive requires access to vital organization information,
the data processing department tries to provide this information immediately.

As the DBA, you are responsible for ensuring that critical transactions execute in an
efficient manner. To optimize performance, you need to schedule data processing
tasks according to specific organization priorities.

Assigning priorities to transactions: The following table shows how you might
prioritize three typical transactions.

Establish a HIGH priority for transactions that are vital to the operations of the organ-
ization. For example, you might specify a HIGH priority for a transaction that ser-
vices the information needs of upper-level managers in the organization.

Sample transactions

Transaction Processing Time Priority
mode

Add or delete a Online 3 seconds High

clam

List employees for Batch 15 minutes Medium

an office

Show salary grade Online 6 seconds Low

for al jobs

10-6 CA-IDMS Database Design



10.4 Determining how often transactions will be executed

10.4 Determining how often transactions will be executed

Early in the design process, you need to determine how often each transaction will be
executed. This can give you an indication of how the transaction might affect the
overall performance of the system.
To determine how often particular transactions will be executed:

® Find out the hours when each transaction will be run.

» Create a preliminary schedule of batch update and reporting program runs.

®  Once you have created a schedule of processing jobs, estimate how often each

transaction will be executed during the hours when it is typicaly run.

Sample transactions: The following table shows how often three typical trans-
actions will be executed.

Transaction Processing Time Priority Frequency of access
mode

Add or delete a Online 3 seconds High 100/day

claim

List employees for Batch 15 minutes Medium 5/week

an office

Show salary grade Online 6 seconds Low 5/week

for al jobs

Chapter 10. Identifying Application Performance Requirements 10-7



10.5 Identifying access requirements

10.5 Identifying access requirements

You identify access requirements for each transaction by analyzing the business func-
tions documented during the logical design process. Different business functions
require different access to the database.

Business function: The following business function specifies that you need to
access the SKILL, EXPERTISE, and EMPLOY EE entities:

Add a skill for an employee.

Sample transactions: The following table shows access requirements for three
sample transactions.

Trans Processing Time Priority Fre- Access requirements
action mode quency of

access
Add or Online 3seconds  High 100/day EMPLOYEE
delete a CLAIM
claim
List Batch 15 Medium 5/week OFFICE
employees minutes EMPLOYEE
for an office
Show salary ~ Online 6 seconds  Low 5/week ggEARY
grade for all GRADE
jobs

10-8 CA-IDMS Database Design



10.6 Determining the database entry point and access key for each transaction

10.6 Determining the database entry point and access key

for each transaction

You need to determine the first entity that each transaction accesses in the database.
Identifying entry points can point out the need for additional indexes, or, as will be
seen in Chapter 11, “Determining How an Entity Should Be Stored” on page 11-1, the
need for an entity to be stored with a location mode of CALC.

You can determine the database entry point and the data element used as an access
key for a transaction by reviewing the access path diagram that you developed for the
transaction during the logical design process. Specify the name of the entity and the

data element used to access the entity.

Sample transactions:

The following table shows the database entry points and
access keys for three typical transactions.

Trans Pro- Time Prior- Fre- Access Entry
action cessing ity quency of require- point
mode access ments
Add or Online 3 sec High 100/day EMPLOYEE ~ EMPLO-
delete a CLAIM YEE
|ai (EMP
clam D)
List Batch 15min  Medium 5/week OFFICE OFFICE
employees EMPLOYEE  (OFFICE
) CODE)
for an office
Show salary ~ Online 6 sec Low 5/week ggEARY %gB )
one
grade for all SRADE
jobs

Chapter 10. Identifying Application Performance Requirements 10-9



10.7 Projecting growth patterns

10.7 Projecting growth patterns

Projecting the minimum, most frequent, and maximum number of entity occurrences
helps you to determine how much space is required to support a database. These
projections should be for a specified period of time.

To structure the database correctly, you need to make the following projections for
each entity:
= Minimum number of occurrences — ldentifies the starting point for the database
and, when compared to the maximum, gives you an idea of the projected growth.

® Most typical number of occurrences — Identifies the number of occurrences seen
most frequently in the database (the mode). This number is used in determining
the number of entity occurrences in a relationship and during performance analysis

» Maximum number of occurrences — Identifies the largest expected number of
occurrences of this entity. This figure is used for sizing the database.

Sample number of entity occurrences: The following table shows the projected
number of occurrences for each entity in the Commonweather Corporation database.

Entity name Minimum Most frequent Maximum
DEPARTMENT 9 15 20
EMPLOYEE 560 1000 1500
OFFICE 36 90 150
JOB 41 80 120
SKILL 68 80 100
STRUCTURE 1000 1500 2000
EMPOSITION 2000 2500 3000
EXPERTISE 3000 3500 4000
COVERAGE 1000 4000 6000
LIFE INS PLAN 3 4 5
HEALTH INS 5 10 10
PLAN

INS CO 5 10 15
HOSPITAL 800 3000 5000
CLAIM

NON-HOSPITAL 1000 4000 6000
CLAIM

DENTAL CLAIM 2500 5000 7000

10-10 CA-IDMS Database Design



10.7 Projecting growth patterns

Entity name Minimum Most frequent Maximum
PATIENT 2000 5000 7000
DENTIST 100 300 1000
PROJECT 350 500 1000
NON-HOSPITAL 2000 5000 8000
PROCEDURE

DENTAL PRO- 4500 7000 9000
CEDURE

PHYSICIAN 100 300 1000
HOSPITAL 50 100 300
WORKER 560 3000 5600

Chapter 10. Identifying Application Performance Requirements 10-11



10.8 Determining the number of entities in each relationship

10.8 Determining the number of entities in each relationship

To determine the sizing characteristics of the database, you will need to know the
number of entities in each data relationship. For example, you will need to know the
number of employees in each department to allow for effective placement of the
EMPLOYEE and DEPARTMENT database entities.

Document both the expected and maximum number of entities in each relationship. If
these numbers cannot be provided, use the statistics on numbers of entity occurrences
gathered earlier to determine the numbers. For example, you can calculate the
maximum number of employees in each department by dividing the maximum number
of EMPLOY EE entity occurrences by the maximum number of DEPARTMENT entity
occurrences.

Sample numbers of relationship entity occurrences: The following table
shows the projected number of entity occurrences in three sample data relationships.

Relationship Expected Maximum
Employees in each department 66 75
Employees in each office 8 20
Positions for each employee 2 5

10-12 CA-IDMS Database Design



10.9 Determining how often each entity will be accessed

10.9 Determining how often each entity will be accessed

If you know how often each entity will be accessed, you will be able to predict poten-
tial bottlenecks in the system. To estimate how frequently each entity will be
accessed:

» Review the database access path of each transaction that uses the entity.
= Analyze the freguency with which each transaction will be executed.
Sample entity access rates: The following table shows how often three sample

database entities might be added, deleted, updated, or retrieved in the course of busi-
ness at Commonweather Corporation.

Entity name Adds Deletes Updates Reads
DEPARTMENT 3lyear 3lyear Lweek 25/day
EMPLOYEE 4/month 3/month 8/week 100/day
JOB Vweek Lweek 5/week 25/day

Chapter 10. Identifying Application Performance Requirements 10-13



10-14 CA-IDMS Database Design



Chapter 11. Determining How an Entity Should Be

Stored

111 Overview . . . . . 11-3
112 Location modes . . . . . . . . ... 11-4
11.2.1 Randomization . . . . . . ... ... . ... ... 11-4
1122 Clustering . . . . . . 11-5
11.3 Guidelines for determining how an entity should be stored . . . . . . .. 11-8
11.3.1 Isthisentity bothaparentandachild? . .. ... ... ... . ... 11-8
11.3.1.1 Isthere optimal relationship clustering for this entity? . . . . . 11-9
11.3.2 Isthis a parent entity but not a child entity? . . . ... . ... ... 11-9
11.3.3 Isthis a child entity but not a parent entity? . . . . ... ... ... 11-10
11.3.4 Is generic retrieval required and is the entity relatively static? . . . . 11-10
11.4 Graphic conventions . . . . . . ... ... 11-11
11.4.1 Conventions for specifying locationmode . . . .. ... . ... ... 11-11
11.4.2 Conventions for representing indexes . . . . ... ... . ... ... 11-12
11.5 Location modes for entities in the Commonwesther database . . . . . . . 11-13

11.5.1 Revised data structure diagram for the Commonweather Corporation  11-15

Chapter 11. Determining How an Entity Should Be Stored 11-1



11-2 CA-IDMS Database Design



11.1 Overview

11.1 Overview

You have now created a preliminary data structure diagram (Chapter 9, “Creating a
Preliminary Data Structure Diagram” on page 9-1) and have gathered the information
necessary to refine this diagram (Chapter 10, “Identifying Application Performance
Requirements” on page 10-1). This chapter discusses the first step in the refinement
process. assigning location modes to the entities in the database.

Chapter 11. Determining How an Entity Should Be Stored 11-3



11.2 Location modes

11.2 Location modes

To guarantee efficient database performance, you need to plan the best use of com-
puter storage resources and provide for the most efficient data access. Severd facili-
ties are available under CA-IDMS/DB for this purpose. By minimizing the number of
input/output operations performed against the database, these facilities ensure optimal
processing performance.

CA-IDMS/DB's data location modes provide you with the following capabilities:
»  Randomization

» Clustering

11.2.1 Randomization

CALC location mode: CA-IDMS/DB alows users to distribute occurrences of a
particular entity randomly across the area to which it is assigned. Randomization of
entity occurrences is achieved with the CALC location mode.

When you specify CALC for an entity, CA-IDMS/DB uses a randomizing algorithm to
calculate a storage page for each occurrence of that entity; the calculation is based on
the value of a symbolic key (called the CALC key).

The diagram below shows the use of the CALC location mode to randomize entity

occurrences.
Program
ADD DEPARTMENT 124
Randomizing
algorithm
Page 1000 Page 1001 Page 1002 Page 1003
Department Department
258 / 156
Department
124
Department
201

CA-IDMS/DB stores an occurrence of a CALC entity on or near a calculated storage
page. The entity is placed directly on the preferred page if sufficient space exists.

11-4 CA-IDMS Database Design



11.2 Location modes

Otherwise, it is placed on the next page within the area where sufficient space exists.
If the end of the area is reached in the search for space, CA-IDMS/DB wraps around
to the beginning of the area.

Purpose of the CALC location mode: The purpose of the CALC location mode
is twofold:

» Direct retrieval by symbolic key enabling retrieval of an entity occurrence with a
single read operation. Retrieval of an entity located CALC involves only knowing
the value of its CALC key; CA-IDMS/DB automatically converts the CALC key
into the correct page number when the entity is requested.

= Random distribution of entity occurrences over al the pagesin an area. This
reduces overflow conditions and leaves space for clustered entity occurrences. For
further information on overflow conditions, see "Overflow Conditions" in
Chapter 15, “Determining the Size of the Database” on page 15-1.

11.2.2 Clustering

Clustering enables you to group entity occurrences that are likely to be accessed
together. When you request clustering, CA-IDMS/DB stores each entity occurrence as
close as possible to another occurrence to which it is logically related.

Minimizing read operations: By storing related entity occurrences on or near the
same page, clustering minimizes the number of read operations required to access the
database. Clustering could, for example, be used to retrieve a DEPARTMENT entity
occurrence and its related EMPLOY EE entity occurrences with a single read operation.

Clustering enhances processing performance by grouping entity occurrences that are
likely to be accessed together. For example, clustering could be used to store
employees CRANE, GARDNER, and FONRAD on the same database page as the
OPERATIONS department, the department to which these employees belong. All four
entity occurrences could be retrieved with a single read operation.

Chapter 11. Determining How an Entity Should Be Stored 11-5



11.2 Location modes

Program

RETRIEVE ALL EMPLOYEES
IN THE OPERATIONS

DEPARTMENT
Page 1000 Page 1001 Page 1002 Page 1003
Cperations Personnel Marketing
Crane Accounting

Gardner

Fonrad

Clustering methods: CA-IDMS/DB supports the following methods of clustering
entity occurrences:

»  Clustering through a relationship allows you to cluster entity occurrences related

through a relationship. This causes an entity (the child) to be stored as close as
possible to the entity it references (the parent).

If assigned to the same area, child occurrences will target to the same page as
their parent.

When assigned to a different area, child occurrences are stored at the same relative
position in their area as the parent occurrence is in its area.

This is the most efficient means of clustering two or more related entities.

To indicate clustering through a relationship, you specify a location mode of
CLUSTERED and the name of the relationship around which this entity is to be
clustered.

»» For further information on how CA-IDMS/DB clusters entity occurrences, see
CA-IDMS Database Administration.

Clustering through an index allows you to cluster entity occurrences based on the
value of a symbolic key. If clustering using an index, all occurrences having the
same (or similar) index key values are targeted to the same database page. This
has the effect of maintaining entity occurrences physically in sequence by the
value of the key.

11-6 CA-IDMS Database Design



11.2 Location modes

This is the most efficient means of ordering data occurrences if multiple occur-
rences are often retrieved in the sequence of their key values. However, its
benefit is minimized if frequent additions and deletions cause entity occurrences to
be stored out of sequence due to overflow conditions.

To indicate clustering through an index, you specify a location mode of CLUS
TERED and the name of the index around which this entity is to be clustered.

For more information on indexes, see Chapter 12, “Refining the Database Design”
on page 12-1.

»  Clustering using the CALC location mode allows you to cluster entities related
through a shared data element. Y ou assign the CALC location mode to each
entity, defining corresponding data elements as CALC keys.

When the CALC location mode is specified for two entities, CA-IDMS/DB stores
all entity occurrences that have the same CALC key value on or near the same
database page.

This is a means of clustering entities even if no relationship exists, but does not
work well for extremely volatile or high-volume entities. Frequent additions and
deletions of entity occurrences may increase the likelihood of contention and, if
many occurrences target to the same page, overflow conditions will increase |/0
rates.

To indicate clustering using the CALC location mode, you specify a location
mode of CALC for each entity, defining identical data elements as CALC keys.

A discussion of when to choose these methods follows.

Chapter 11. Determining How an Entity Should Be Stored 11-7



11.3 Guidelines for determining how an entity should be stored

11.3 Guidelines for determining how an entity should be
stored

Guidelines for assigning location modes to entities are shown below. As you deter-

mine how you want to store each entity, indicate this information on your data struc-
ture diagram.

Cluster Yes Optimal Yes

Both parent

by relationship relationship -— and child?
clustering?
No
Parent but
CALC not a child?

Child Yes Cluster by
aonly and optimal _~——"| g|ationship
clustering?
No Generic Yes [clust
retrieval and U_S er
relatively by index
static?

The decision operations in the chart are discussed below, followed by a discussion of

how to assign data location modes to entities in the Commonweather Corporation date-
base.

11.3.1 Is this entity both a parent and a child?
Ask this question of every entity identified in the logical database design.

If the answer to this question is Yes for an entity, the entity is involved in multiple

relationships and you must decide which if any of these relationships should be used
for clustering.

11-8 CA-IDMS Database Design



11.3 Guidelines for determining how an entity should be stored

11.3.1.1 Is there optimal relationship clustering for this entity?

11.3.2

Is this a

If the entity is involved in multiple relationships in which it is both the parent and
child, it may be possible to cluster this entity around another related entity. Optimal
clustering means that application programs access this entity most often in conjunction
with another entity and clustering can be used effectively.

Clustering through a relationship is one of the most effective ways of reducing 1/0s
when related entity occurrences are retrieved together. Therefore, if applications
accessing this entity frequently access related entities, you should generaly cluster the
child entities through the relationship.

Note: If the size of all clustered entity occurrences is too large, the benefit of clus-
tering may be negated because several 1/0O's are required to access the entire
cluster.

If there is no optimal clustering, the entity should be stored CALC providing both an
alternate entry point into the database and a parent around which other entities can be
clustered.

Example: An example of such an entity is the EMPLOY EE entity. This entity is
both a parent and a child, but has no optimal clustering.

The COVERAGE entity, on the other hand, is both a parent and child, but can be
clustered optimally around the EMPLOY EE-COVERAGE relationship since access is
most often by means of the EMPLOY EE entity and multiple COVERAGE entity
occurrences relating to a particular employee are often accessed at the same time.

parent entity but not a child entity?
Ask this question for each entity that does not exist as both a parent and a child.

An entity that exists only as a parent entity is often used as an entry point into the
database. For this reason, it is advisable to have a fast access key on the entity.
The CALC location mode generally is a better choice than an index key because:

m |t requires fewer 1/O's to access an entity using a CALC key

»  The CALC agorithm randomizes entity occurrences, thus allowing space to cluster

related entity occurrences

Example: An example of a parent entity but not a child entity is the DEPART-
MENT entity. This entity should be stored CALC based on the DEPT ID.

Chapter 11. Determining How an Entity Should Be Stored 11-9



11.3 Guidelines for determining how an entity should be stored

11.3.3 Is this a child entity but not a parent entity?

AsK this question of each entity that exists neither as a parent and child, nor as only a
parent.

An entity that acts as a child but not a parent is not usually used as an entry point into
the database. This entity often can be stored clustered around one of its parent enti-
ties.

Clustering through a relationship is one of the most effective ways of reducing 1/0s
when related entity occurrences are retrieved together. Therefore, if applications
accessing this entity frequently access related entities, you should generaly cluster the
child entities through the relationship.

Note: If the size of al clustered entity occurrences is large, the benefit of clustering
may be negated because it requires several 1/0O's to access the entire cluster.

Example: An example of a child entity but not a parent is the EXPERTISE entity.
An occurrence of this entity is most frequently accessed through its associated
EMPLOY EE entity occurrence. Therefore, it can be stored clustered around the
EMP-EXPERTISE relationship.

11.3.4 Is generic retrieval required and is the entity relatively static?

The only entities left to ask this question of are standalone entities and child-only enti-
ties having no optimal clustering.

Y ou should choose CALC location mode if application programs always retrieve this
entity using its full key or if it is relatively dynamic (that is, many additions, deletions,
or key changes).

If an entity is relatively static and multiple occurrences are often retrieved together, it
is most effective to cluster the entity through an index defined on the most-commonly
used access key.

If the entity is not static, but often participates in multi-occurrence retrievals, cluster
the entity on an index defined on its db-key. Refer to Chapter 12, “Refining the Data
base Design” on page 12-1 for more information on indexes.

11-10 CA-IDMS Database Design



11.3 Guidelines for determining how an entity should be stored

11.4 Graphic conventions

There are graphic conventions used to represent both the location mode and indexes.

11.4.1 Conventions for specifying location mode

To indicate your location mode decision on the data structure diagram, you need to
name the method (CALC or CLUSTERED). If the entity is to be stored CALC, name
the CALC key. If the entity is to be clustered, name the relationship or the index it is
to be clustered around.

The diagram below shows how your location method decisions are indicated on the
diagram. The EMPLOY EE entity has a location mode of CALC. Its CALC key is the
data element EMP ID and duplicates of this key are not allowed; the key must be
unique. The second example is the DENTAL CLAIM entity which has a location
mode of CLUSTERED. Occurrences of this entity will be clustered around the
COVERAGE-CLAIMS relationship.

EMPLOYEE DENTAL CLAIM
entity name entity name
128 CALC 47 CLUSTERED
fength |focation mode fength | Jocation mode
EMP ID u COVERAGE-CLAIMS
CALC key dup opt relationship name

The following characteristics of the entities are indicated on the diagram:

Entity name — The name of the entity

Length — The estimated data length (in bytes) for fixed-length entities; the
maximum length for variable-length entities. This information is used in database
sizing.

Location mode — How the entity is stored in the database (CALC or CLUS
TERED).

CALC-key, relationship name, or index name — The name of the CALC-key field
(CALC entities) or the name of the relationship around which this entity is to be
clustered (if the entity is to be clustered around a relationship), or the name of the
index around which this entity is to be clustered (if the entity is to be clustered
around an index).

Dup opt (CALC entities only) — The duplicates option: the disposition of entities
with duplicate CALC keys (U for unique or blank for non-unique).

Chapter 11. Determining How an Entity Should Be Stored 11-11



11.4 Graphic conventions

11.4.2 Conventions for representing indexes

To represent an index on the data structure diagram:

® Use atriangle to represent the index

m  Specify a name for the index

®  |dentify the data element name(s) that are to be indexed

»  Specify whether duplicate indexed keys are alowed (blank) or not alowed (U)
Sample index representation: The following diagram shows the standard
CA-IDMS/DB notation for an index. The index alows the DBMS to access all

EMPLOY EE entity occurrences in the database based on the last name/first name in
ascendingorder. Duplicate last name/first name combinations are allowed.

EMP-LNAME-NDX
(EMP LAST NAME
EMP FIRST NAME)

EMPLOYEE
| | 128 | CALC
EMP ID U

11-12 CA-IDMS Database Design



11.4 Graphic conventions

11.5 Location modes for entities in the Commonweather
database

By following the guidelines presented in this chapter, you can assign appropriate
location modes to the entities in your database. The table below shows how the
location mode was decided upon for each entity in the Commonwesather database.

I's this entity... Both With Parent Child and Generic
parent optimal and not not parent retrieval and
and clus- child? (w/optimal relatively
child? tering? cluster- static?

ing)?

DEPARTMENT
OFFICE
PROJECT

INS CO

LIFE INS PLAN
HEALTH INS
PLAN
NON-HOSPITAL
CLAIM
HOSPITAL
CLAIM
DENTAL CLAIM
HOSPITAL
PHYSICIAN
DENTIST
EMPLOYEE
JOB

SKILL

PATIENT

< <

zzz<zzzZz<zZ2<<zZ22Z2<Z2Z
: Do
<<=<'zZ''z=<"
: >0 1

< <<

L ocation mode: Store CALC on primary key. For
example, store the EMPLOY EE entity CALC on EMP
1D)]

Chapter 11. Determining How an Entity Should Be Stored 11-13



11.5 Location modes for entities in the Commonweather database

I's this entity... Both With Par ent Child and Generic
parent optimal and not not parent retrieval and
and clus- child? (w/optimal relatively
child? tering? cluster- static?

ing)?

EMPOSITION N - - Y -

EXPERTISE N - - Y -

STRUCTURE N - - Y -

WORKER N - - Y -

PHONE N - - Y -

SALARY N - - Y -

GRADE Y Y - - -

COVERAGE N - - Y -

NON-HOSPITAL

PROCEDURE N - - Y -

DENTAL

PROCEDURE

Location mode: Store clustered on the optimal
relationship. For example, store the EXPERTISE

- entity clustered on the EMP-EXPERTISE relationship.

11-14 CA-IDMS Database Design



11.5 Location modes for entities in the Commonweather database

11.5.1 Revised data structure diagram for the Commonweather
Corporation

After you have decided how you want to store and access each entity, indicate this
information on the data structure diagram. Below is the updated data structure
diagram for the Commonweather Corporation database.

SALARY GRADE PHONE
OFFICE-PHONE
[ T=8 Jclustenen) FK (OFFICE CODE) [ T1o Jowusreren
JOB-GRADE [ OFFICE-PHONE |
OB SALARY DEPARTMENT OFFICE
FK (OB 1D} HEREXE [ Ts5 Jeac
DEPT ID | u OFFICE CODE | U
JOB SKILL
| [e283] cac [ J7e Jcac
JOB 1D [u DEPT-EMPLOYEE DEPT-HEAD OFFIGE-EMPLOYEE SKILL CODE [u
FK (DEPT 1D} FK (EMP D) FK {OFFICE GODE)
JOB-EMPOSITION SKII I -EXPERTISE
FK {JOB ID) FK (SKILL GODE)
EMPOSITION EMP-EMPOSITION [ \p| OYEE EMPEXPERTISE ™ FypERTISE
FK (EMF 1D} FK (EMP ID)
| 39 [orusteren [ T128] cac | T16 Jousteren
EMF—EMPOSITION| EMP 1D | u EMP-EXPERTISE |
EMP-PROJECT
FK (EMP 1D)
PROJECT MANAGES-REPORTS-TO | LIFE INS PLAN
[ J78 Jonc FK (SUPR EMP ID) [ Jeo Jeoac
EMP-WORKER
PROJECT CODE_[U FK {EMP ID) LIFE PLAN CODE [ U
LIFE-PLAN
FK (LIFE PLAN CODE) INSCO-LIP
PROJECT-WORKER WORKER FK (INSCO NAME)
FK (PROJECT CODE) [ T20 Jowsteren
EMP-GGVERAGE INS CO
PROJECT-WORKER
[ FK (EMP 1D} [ Tto1]cac
INSCO NAME [ U
COVERAGE HIP-COVERAGE INSGA-HIP
[ [50 JcLustEReD| FK (HEALTH FICINSGO NAME)
COVERAGE-NHC Pl AN CODE)
FK (EMP ID) EMP-COVERAGE | HEALTH INS PLAN
COVERAGE-DC [ o0 Joac
COVERAGE-HC FK (EMF 1D) HEALTH PLAN CD| U
FK (EMP D)
NON-HOSPITAL CLAIM HOSPITAL CLAIM
[ Thie7]cac [ Tres] calc
NON-HOSP GLAIM 1D | U HOSPITAL CLAIM 10] U DENTAL CLAIM
[ a7 [ cac
DENTAL CLAIM 1D[ U
HOSPITAL-HC
NHCLAIM-PROC FK (HOSPITAL NAME)
FK (NON-HOSPITAL PHYSICIAN-NHG DCLAIM-PROC
CLAIM ID) FK (PHYSICIAN 1D} HOSPITAL FK (DENTAI CI AIM ID)
[ J71 Jeac
NON-HOSP PROCEDURE HOSPITAL NAME | U DENTAL PROCEDURE
| Tes Jewusreren] | panent.nmce [ Jes [cLusteren
NHCLAIM-PROC | FK (PATIENT NAME) DCLAM-PROC |
PATIENT-HC DENTIST-DG
FK {PATIENT NAME) FK (DENTIST LICENSE
NUMBER)
PHYSICIAN PATIENT DENTIST
[ [77 Jecac [ 88 JcAc [ J77 Jeac
PHYSICAN D U EMP 1D DENT LICNUM [ U

Chapter 11. Determining How an Entity Should Be Stored 11-15



11-16 CA-IDMS Database Design



Chapter 12. Refining the Database Design

12.1 Evaluating the databasedesign . . . . . . . . ... ... L. 12-3
12.2 Refinement options . . . . . . .. .. 12-4
12.3 Edtimating I/Os for transactions . . . . . . . ... ... ... ... 12-5
12.3.1 Sample exercise #1: Estimating 1/Os for a retrieval transaction . . . 12-6
12.3.2 Sample exercise #2: Estimating 1/Os for an update transaction . . . 12-7
12.4 Eliminating unnecessary entities . . . . . . ... ... . L 12-9
12.4.1 Collapsing relationships . . . . . .. . .. .. ... . ... . ..... 12-9
12.4.2 Introducing redundancy . . . .. . .. ... .. ... ... ... ... 12-10
12,5 Eliminating unnecessary relationships . . . . . . . . ... ... ... ... 12-12
126 Addingindexes . . . . .. . . ... 12-13
12.7 Refined data structure diagram for Commonwesather Corporation . . . . . 12-18

Chapter 12. Refining the Database Design 12-1



12-2 CA-IDMS Database Design



12.1 Evaluating the database design

12.1 Evaluating the database design

You have created a preliminary model for a physical database and have identified the
entities in the database. Y ou have also gathered the information necessary to refine
this diagram and have assigned location modes to the entities. Now you will refine
the preliminary design to allow for optimal transaction and system performance.

Evaluation considerations: Before you refine the data structure diagram, you
need to evauate the design for performance. To satisfy performance requirements for
each individual business transaction, you need to consider the following issues:

= |nput/output (I/O) performance — Is the number of 1/0O operations performed
against the database sufficiently low to provide satisfactory transaction perform-
ance?

»  CPU time — Does the structure of the physical database optimize the use of CPU
processing?

®  Space management — Do design choices help to conserve storage resources?

Once you have refined the database to satisfy each individual transaction, you need to
determine how the system will be affected by the concurrent execution of several
transactions. To avoid excessive contention for database resources, you need to make
appropriate changes to the physical model.

Refining the database design: Like many other database design procedures,
refining the database design is an iterative process, as shown below. As you refine the
design, you need to evaluate the design for performance. When you make changes,
you should review the design to ensure that it will optimize processing for all critica
transactions and also minimize the likelihood of contention.

Chapter 12. Refining the Database Design 12-3



12.2 Refinement options

12.2 Refinement options

CA-IDMS/DB provides options for refining the database design to ensure optimal per-
formance in individua transactions. Thereis no right or wrong method for refining the
physical database model. Your organization's requirements will determine the best
approach for you.

Options: The following database options can be used to ensure optimal performance
in individual business transactions:

®  Indexes — Chapter 11, “Determining How an Entity Should Be Stored” on
page 11-1 showed you how to include indexes in the database design to provide
data clustering. At this point in the design process, you have the option to include
additional indexes to provide generic search capabilities as well as alternate access
keys.

n  Collapsing relationships — A one-to-many relationship can be expressed within
a single entity by making the many portion of the relationship a repeating data
element. A one-to-many relationship expressed in this way can enhance proc-
essing performance by reducing DBMS overhead associated with processing mul-
tiple entity occurrences.

® |ntroducing redundancy — By maintaining certain data redundantly, you can
sometimes enhance processing efficiency in selected applications.

Each of these options is described in detail below following a discussion of how to
estimate 1/Os for transactions.

12-4 CA-IDMS Database Design



12.3 Estimating I/Os for transactions

12.3 Estimating I/Os for transactions

After you have assigned data location and access modes to the entities in a database,
you need to estimate the number of input/output operations that each business trans-
action will perform. You estimate the 1/O count for a transaction by tracing the flow
of processing from one entity to another in the database. As you trace the flow of
processing, you determine the number of 1/Os required to access all necessary entities.

The /O estimate for a business transaction depends on severa factors, including:
= The order in which entities are accessed
»  The location mode of each entity accessed
m  The types of indexes (if any) used to access the data
= How the entities are clustered in the database
General guidelines: Assuming that an entire cluster of database entities can fit on

a single database page, you can use the following general guidelines for estimating
|/Os:

m Zero |/Os are required to access an entity that is clustered around a previously
accessed entity.

= One I/O is required to access an entity stored CALC.

m Three I/Os are required to access an entity through an index.

To calculate the time required to perform all 1/0O operations in a particular transaction,
perform the following computations:

» Total number of I/Os for all entity types — Compute the total number of 1/O
operations by adding the number of 1/Os required to retrieve and update occur-
rences of all entity types.

m |/O reserve factor — Multiply the total number of 1/Os by 1.5 to account for
possible overflow conditions and large index structures.

= Amount of time to perform 1/0s — Multiply the total nhumber of 1/Os for all
entity types by the access time for the device being used. The result is a rough
estimate of the time required to perform all I/O operations in the transaction.

Once you have determined how much time will be required to execute a particular
transaction, you need to compare this time figure with the performance goal you estab-
lished earlier in the design process. If the required time does not meet your expecta-
tions, you need to modify the physical database model until it does. Sometimes you
have to change your expectations.

For further information on establishing performance goals for business transactions, see
Chapter 10, “Identifying Application Performance Requirements’ on page 10-1.

Chapter 12. Refining the Database Design 12-5



12.3 Estimating I/Os for transactions

Two sample exercises in estimating 1/Os are presented below. Each exercise uses the
EMPLOY EE, EXPERTISE, and SKILL entities:

SKILL
[ Jm] cac
SKILL ID [u
SKILL-EXPERTISE
FK (SKILL ID)
EMPLOYEE EMP-EXPERTISE EXPERTISE
[ 1z ] cac FK (EMP ID) | T 18 Jorusteren
EMP ID | u EMP-EXPERTISE |

12.3.1 Sample exercise #1: Estimating I/Os for a retrieval transaction
Suppose you need to estimate I/Os for the following transaction:
Identify skills for an employee.

In this transaction, the user specifies an employee ID value and the system returns the
employee 1D, name, skill code, skill level, and skill description for the specified
employee. This transaction uses the EMPLOY EE entity as an entry point to the data-
base.

I/O estimates: By analyzing the access path of the transaction, you can make the
following 1/O estimates for each entity accessed:

= EMPLOYEE — Because this entity is stored CALC, only one I/O operation is
required to retrieve one EMPLOY EE entity occurrence from the database.

» EXPERTISE — Each employee can have as many as five skills. Therefore, the
transaction retrieves five EXPERTISE entity occurrences for each EMPLOY EE
entity occurrence. However, since EXPERTISE entity occurrences are clustered
around a related EMPLOY EE entity occurrence, no 1/0Os are necessary to retrieve
the EXPERTISE entity occurrences.

m SKILL — For each EXPERTISE entity occurrence retrieved, there is an associ-
ated SKILL entity occurrence in the database. Therefore five SKILL entity occur-
rences are retrieved for each employee. Since the SKILL entity is stored CALC,
its occurrences are distributed randomly in the database. To retrieve five SKILL
entity occurrences, the system must perform five 1/Os.

12-6 CA-IDMS Database Design



12.3 Estimating I/Os for transactions

Estimating 1/Os for a sample retrieval transaction: A total of six I/O oper-
ations will be performed by this transaction, as shown below.

Number of Number of Total 1/Os for
I/0Os to access| occurrences entity type
one occur- accessed

rence

—Identify skills Read | Write [Total

for an employee
Record Employee ! ! ! !
Record Expertise a 5 5 0
Record Skift ! 5 5 5
Record
Record
Record
Record

Total number of 1.Os for the

transaction 6
Total I/0s plus reserve factar

of 50% 9
Minimum time for the transaction

{I/0s * .025 sec) -225

12.3.2 Sample exercise #2: Estimating I/Os for an update transaction

When you estimate 1/0Os for a transaction that performs update functions, you need to
consider 1/0 operations that must be executed to ensure database integrity. In addition
to the 1/Os required to access desired entities, update transactions must perform 1/Os to
access related entities. Some types of integrity checking require that the system access
other related entities.

Suppose you need to estimate 1/Os for the following transaction:
Add a skill for an employee.

To protect the relationship between an EMPLOY EE entity and an associated EXPER-
TISE entity, the EMPLOY EE entity must be accessed before storing the EXPERTISE
entity. Likewise, to protect the relationship between a SKILL entity and an associated
EXPERTISE entity, the SKILL entity must be accessed before storing the EXPER-
TISE entity.

Chapter 12. Refining the Database Design 12-7



12.3 Estimating I/Os for transactions

I/O estimates: Knowing this information, you can make the following /O estimates
for each entity accessed:

= EMPLOYEE — Because this entity is stored CALC, only one I/O operation is
required to access one EMPLOY EE entity in the database.

m SKILL — Since the SKILL entity is stored CALC, only one I/O is required to
access a single SKILL occurrence in the database.

n EXPERTISE — EXPERTISE entities are clustered around a related EMPLOY EE
entity. Therefore one /O is necessary to store the EXPERTISE entity.

Estimating 1/Os for a sample update transaction: A total of three 1/O oper-
ations will be performed by this transaction, as shown below.

Number of Number of Total 1/QOs for
I/Os to access| occurrences entity type
ane occur- accessed
rence
Add a skill
Read | write |Total
for an employee
Record Employee 1 1 1 1
Record Skill 1 1 1 1
Record Expertise 0 0 1 7 7
Record
Record
Record
Record

Total number of 1.Os for the

transaction 3
Total 1/Os plus reserve factor
of 50% 4.5

Minimum time for the transaction
(1/0s * .025 sec)

12-8 CA-IDMS Database Design



12.4 Eliminating unnecessary entities

12.4 Eliminating unnecessary entities

Sometimes entities identified during the logical design are not required as separate
entities in the physical implementation. Two ways to eliminate such entities are:

» Collapsing relationships

® |ntroducing redundancy

12.4.1 Collapsing relationships

During the normalization process in logical database design, you separated multiply-
occurring data into a separate entity type (first normal form). It may be more efficient
to move this data back into the origina (parent) entity.

Consider this option if data occurs a fixed number of times and the data is not related
to another entity. An example of such data is monthly sales totals for the last twelve
months collapsed into a sales entity.

Advantages: By maintaining the data in a single entity instead of maintaining two
separate entity types, you can:

®  Save storage space that might otherwise be used for pointers or foreign-key data.

»  Reduce database overhead by eliminating the need to retrieve two entities. When
you express a one-to-many relationship within a single entity, application pro-
grams can access al desired data with a single DBMS access.

Note: Expressing a one-to-many relationship within a single entity offers little 1/O
performance advantage over clustering two separate entities.

Comparison of collapsing relationships and maintaining separate
entities: The following table presents a comparison of collapsing relationships into a
single entity type and maintaining separate entities.

Chapter 12. Refining the Database Design 12-9



12.4 Eliminating unnecessary entities

Efficiency consider- Potential impact

ations

/10 Expressing a one-to-many relationship within a single entity
offers little 1/0O performance advantage over clustering two
entities.

CPU time By storing a repeating element in an entity, you can reduce
the amount of CPU time required to access the necessary
data.

Space management By storing a repeating element in an entity instead of main-

taining two separate entity types, you can save storage space
that might otherwise be required for pointers or foreign key
data.

Contention No difference

SQL considerations: Because repeating elements violate first normal form, they
are incompatible with the relational model and cannot be defined in SQL. However, if
there are a fixed number of repetitions (such as months in a year), the repeating ele-
ments can be separately named (such as JANUARY, FEBRUARY, etc.). If thereisa
variable but quite small number of occurrences (such as phone numbers), a fixed
maximum number elements can be named (PHONEL, PHONE?2, for example), using
the nullable attribute to allow identification of occurrences which may not have a
value.

12.4.2 Introducing redundancy

Although data redundancy should normally be avoided, you can sometimes enhance
processing efficiency in selected applications by storing redundant information. A
certain amount of planned data redundancy can be used to simplify processing logic.

In some instances, you can eliminate an entity type from the database design by main-
taining some redundant information. For example, you might be able to eliminate an
entity type by maintaining the information associated with this entity in another entity
type in the database. When you merge two or more entity types in this way, you
simplify the physical data structures and reduce relationship overhead.

Considerations: Consider maintaining redundant data under the following circum-
stances:

= An entity type is never processed independently of other entity types. If an
entity is always processed with one or more additional entity types, you may be
able to diminate the entity and store the information elsewhere in the database.
Since the information associated with the entity is not meaningful by itself, incon-
sistent copies of the data should not present a problem for the business.

= An entity typeis not used as an entry point to the database. If application
programs do not use a particular entity type as an entry point to the database, you

12-10 CA-IDMS Database Design



12.4 Eliminating unnecessary entities

may be able to eliminate the entity type from the design. However, do not elimi-
nate the entity if it is a junction entity type in a many-to-many relationship.

®» The volume of data to be stored redundantly is minimal. Do not maintain
large amounts of data redundantly. A high volume of redundant information will
require excessive storage space.

Example: The following diagram shows how you might use data redundancy to
enhance processing of dental claim information.

By maintaining all DENTIST information with the DENTAL CLAIM entity, you can
simplify the database design and reduce the overhead of maintaining the relationship.
Since Commonweather users do not process information associated with the DENTIST
entity by itself, inconsistent DENTIST information will not present a problem for the

business.

Preliminary
design:

Refined
design:

DENTAL CLAIM
| | 47 | CALC
DENTAL GLAMID | U
DENTIST-DG
FK (DENTIST LICENSE NUMBER)
DENTIST
| |T’ | CALC

DENTAL LICENSE NU|\4 u

DENTAL CLAIM

[ T 18] cac

DENTAL CLAIM ID | U

Chapter 12. Refining the Database Design 12-11



12.5 Eliminating unnecessary relationships

12.5 Eliminating unnecessary relationships

The purpose of a relationship is to represent integrity rules between entities. As such
they serve a useful purpose in modeling your business. However, there is always
overhead associated with a relationship. Since the DBMS must ensure the integrity of
a relationship during update operations, they result in increased CPU and I/O. They
may also require additional storage space.

While you should not sacrifice needed integrity, you should eliminate relationships that
are not required for business reasons. Particularly review the need for:

®  One-to-one relationships

For example, the DEPARTMENT-HEAD relationship may not require DBMS
enforcement of integrity and, if so, should be eliminated as a relationship.

»  Relationships in which there are only a few pre-established parent occurrences

Examples of this type of relationship would be STATE-OFFICE or
SEX-EMPLOYEE. Ensuring that each office isin a valid state or that each
employee is assigned a valid sex should be done in one of the following ways
rather than as a relationship.

By using a map edit or code table (application enforcement)

By using a check constraint (in SQL-defined databases)

By using database procedures (in non-SQL defined databases)

Through a logical record facility path (in non-SQL defined databases)

In the Commonweather database, the relationship between INSCO and HEALTH
INSURANCE PLAN can be removed.

12-12 CA-IDMS Database Design



12.6 Adding indexes

12.6 Adding indexes

In Chapter 11, “Determining How an Entity Should Be Stored” on page 11-1, you
included indexes in the physical database model for entities that will be accessed
through multi-occurrence retrievals. These entity occurrences will be clustered around
the index. You now have the option to define additional indexes for database entities
to satisfy processing requirements.

Review the function lists and access paths that you documented during the logical
design process to ensure that each entry point entity has an efficient access for each
application search key. If necessary, add additional indexes as alternate access keys to
satisfy application requirements.

For further information on how to determine the database entry point for each business
transaction, see Chapter 10, “ldentifying Application Performance Requirements’ on
page 10-1.

What is an index?: An index is a data structure consisting of addresses (db-keys)
and values from one or more data elements of a given entity. Indexes enhance proc-
essing performance by providing alternate access keys to entities.

EMP-LNAME-NDX
DES (EMP LAST NAME
EMP FIRST NAME)

EMPLOYEE
| [izs [cac
EMP-ID u

Advantages and disadvantages: While indexes minimize the number of I/Os
required to retrieve data from the database, they require extra storage space and add
overhead for maintenance. The addition of an index actually increases the 1/0Os and
processing time required to add or remove an entity occurrence. Y ou will need to
weigh the options when considering the use of indexes.

Why add additional indexes?: Indexes provide a quick and efficient method for
performing severa types of processing.

» Direct retrieval by key — With an index, the DBMS can retrieve individual
entity occurrences directly by means of a key. For example, an application pro-
grammer could use an index to quickly access an employee by socia security
number.

Because more than one index can be defined on an entity (each on a different data
element), they can be used to implement multiple access keys to an entity.

Chapter 12. Refining the Database Design 12-13



12.6 Adding indexes

Generic access by key — Indexes allow the DBMS to retrieve a group of entity
occurrences by specifying a complete or partial (generic) key value. For example,
an index could be used to quickly access all employees whose last names begin
with the letter M. A string of characters, up to the length of the symbolic key,
can be used as a generic key.

Ordered retrieval of occurrences — The DBMS can use a sorted index to
retrieve entity occurrences in sorted order. In this case, the keys in the index are
automatically maintained in sorted order; the entity occurrences can then be
retrieved in ascending or descending sequence by key value. The application
program does not have to sort the entity occurrences after retrieval. For example,
all employees could be listed by name. Because entity occurrences can be
accessed through more than one index, they can be retrieved in more than one sort
sequence.

Retrieval of a small number of entity occurrences — An index improves
retrieval of al occurrences of a sparsely-populated entity and provides a way of
locating al occurrences of such entities without reading every page in the area (an
area sweep). Area sweeps are the most efficient means of retrieving entities with
occurrences on al (or amost al) pages in an area.

Physical sequential processing by key — Entity occurrences can be stored clus-
tered around an index. With this storage mode, the physical location of the clus-
tered entity occurrences reflects the ascending or descending order of their db-keys
or symbolic keys. If occurrences of an entity are to be retrieved in sequential
order, storing entity occurrences clustered via the index reduces I/O. This option
is most effective when used with a stable database.

Enforcement of unique constraints — An index can be used to ensure that entity
occurrences have unique values for data elements; for example, to ensure that
employees are not assigned duplicate social security numbers.

Other means of enforcing unique constraints include:
— Using a unique CALC key
— Using a sorted relationship

Index keys: The keys associated with an index can be either:

= Symbolic keys, in which the key values in the index are the same as one or more

data elements in the indexed entity occurrences

Db-keys, in which the key values in the index are the db-keys of the indexed
entity occurrences.

Symbolic key indexes are useful for:

Enforcing unigque constraints

Providing aternate access keys (entry points) into the database

®  Supporting generic and ordered retrieval of entity occurrences

Db-keys are useful for:

12-14 CA-IDMS Database Design



12.6 Adding indexes

»  Retrieving all occurrences of a sparsely-populated entity (an entity with occur-
rences on only some of the pages in an area)

If generic or ordered retrieval is not a consideration when adding new symbolic key
index and the key is made up of more than one data element, choose as the first data
element one which is not already an access key into the database. For example, if you
place an index on COVERAGE to ensure that its primary key is unique, then the index
key will be composed of: EMP ID, HEALTH PLAN CODE, and COVERAGE TYPE.
Since EMP ID and HEALTH PLAN CODE are aready entry points into the COV-
ERAGE entity (because they are CALC keys of related entities), choose COVERAGE
TYPE as the first data element in the index key.

Index order: Theindex order is the way in which the entity occurrences will be
logically ordered based on the key(s) you have chosen. Index orders include:

® Ascending -- Index entries are ordered so that an entry with a lower key value
occurs before an entity with a higher key value: A through Z, smallest to largest.

»  Descending -- Index entries are ordered so that an entry with a higher key value
occurs before an entity with a lower key value: Z through A, largest to smallest.

» Mixed -- You can choose to have one key of an index ordered in one order and
another key of the same index in a different order.

In general, choose an index order based on how data is most frequently accessed. For
example, if employees are most often retrieved in ascending order by last name, then
choose ascending as the index order

Db-key indexes: You can choose to have the index order based on the db-keys of
the entity occurrences being indexed.

Indexes ordered by db-key especially improve retrieval of entities with occurrences on
only some of the pages in an area, but which are likely to have more than one occur-
rence per page, such as entities clustered around a sparsely occurring parent.

Retrieving all occurrences of an entity: The following table provides guidelines
for choosing a retrieval method (and, thus, a design) to retrieve all occurrences of an
entity.

Data in the database

Access method

Sparsely populated

An index based on symbolic key

Every page contains one or more
occurrences of the entity

Use an area sweep

Sparsely populated but a page con-
tains multiple occurrences of the
entity

An index based on db-key

Chapter 12. Refining the Database Design 12-15



12.6 Adding indexes

SQL considerations: In the SQL environment, every entity which is a parent in a
relationship must have a unique index or CALC key defined for the referenced
(primary) key. Add any indexes that are missing.

Every entity defined in an SQL-defined database is initially assigned a default index.
This is an index sorted by db-key so that all entity occurrences can be accessed with
the minimum number of 1/0Os. You must decide whether to retain this index or drop it.
Y ou should drop the default index if any of the following are true:

»  The entity is densely populated; every page contains at least one occurrence of the
entity

®  Entity occurrences are clustered around another index

»  Another index is defined on the entity, and it is unlikely that more than one entity
occurrence resides on a page

= Non-keyed queries will be extremely rare
Representing additional index options: In Chapter 11, “Determining How an
Entity Should Be Stored” on page 11-1, you saw how to represent an index.
To represent additional index options the data structure diagram:

»  Specify the order for each data element used as an index key (ASC - ascending;
DES - descending)

» | the order is by db-key, specify DBKEY

The following diagram shows the standard CA-IDMS/DB notation for an index. The
index allows the DBMS to access all EMPLOY EE entity occurrences in the database
based on the last name/first name in descending order. Duplicate last name/first name
combinations are allowed.

EMP-LNAME-NDX
DES (EMF LAST NAME
EMP FIRST NAME)

EMPLOYEE
| [128]cac
EMP-ID u

Summary of indexes: Indexes should be added if necessary when validating trans-
action performance. Add additional indexes to if the advantage gained outweighs the
cost.

The following table presents a comparison of the use of indexes and user-written sort
routines.

12-16 CA-IDMS Database Design



12.6 Adding indexes

Efficiency consider-
ations

Potential impact

/10 I/0 may be reduced for retrieval but increased for update
CPU time CPU can be reduced for retrieval but increased for update
Space Indexes require extra storage space in the database
Contention The use of an index can sometimes cause contention

Chapter 12. Refining the Database Design 12-17



12.7 Refined data structure diagram for Commonweather Corporation

12.7 Refined data structure diagram for Commonweather

Corporation

Collapse relationships: You can eiminate unnecessary entities by embedding
their data in a related entity type. By using a repeating data element instead of main-
taining two separate entities, you can save storage space and also reduce CPU needed
to access the repeating data as described below:

» The PHONE and SALARY GRADE records are ideal candidates for elimination
because:

— Each entity participates in only one relationship. The PHONE entity is
related only to the OFFICE entity; the SALARY GRADE entity is related
only to the JOB entity.

— A maximum number of repetitions is predictable for each entity. A maximum
of three phone numbers exists for each office; a maximum of four salary
grades exists for each job.

Thus we can eliminate the PHONE entity and place three PHONE NUMBER data
elements in the OFFICE entity. We can also eliminate the SALARY GRADE
entity and place four SALARY GRADE data elements in the JOB entity. If you
define this database using SQL statements, each of the repeating data elements
must have a unique name and, in the case of PHONE NUMBER and SALARY
GRADE, alow null values.

Introduce redundancy: The PHYSICIAN, HOSPITAL, PATIENT, DENTIST, and
INS CO entities are never processed independently of other entity types. Therefore,
they do not need to be maintained independently in the database. In addition, informa-
tion in the PROJECT and WORKER entities is aready carried in the STRUCTURE
entity. HEALTH INS PLAN and LIFE INS PLAN contain the same type of informa-
tion and can be combined into a single entity. Information maintained in these entities
can therefore be embedded in other related entities:

® [NS CO information can be stored in HEALTH INS PLAN and LIFE INS PLAN.
1 PHYSICIAN information can be maintained in NON-HOSPITAL CLAIM.
8 HOSPITAL information can be maintained in HOSPITAL CLAIM.

® PATIENT information can be maintained in NON-HOSPITAL CLAIM, HOS-
PITAL CLAIM, and DENTAL CLAIM.

» DENTIST information can be maintained in DENTAL CLAIM.

» HEALTH INS PLAN and LIFE INS PLAN can be combined into one entity
caled INSURANCE PLAN

Update anomalies for these entities will not present a problem for the organization.
For example, since Commonweather users do not process DENTIST information by
itself, inconsistent information in this entity will not compromise integrity or compli-
cate business processing functions.

12-18 CA-IDMS Database Design



12.7 Refined data structure diagram for Commonweather Corporation

Eliminate unnecessary relationships: At this point, the health-related entities
can be represented as:

LIFE-PLAN
EMPLGOYEE
INSURANCE PLAN
COVERAGE
HIP-COVERAGE

The LIFE-PLAN relationship can be eliminated by treating it as another type of cov-
erage available through an insurance plan. Although this change will require that an
occurrence of COVERAGE be associated with each EMPLOYEE, it simplifies the
database structure and the application processing.

The HIP-COVERAGE relationship can be eliminated also. Since there will never be
more than 15 insurance plans in the database, the validity of an employee's insurance
information (the plan code) can be enforced through other means such as a logical
record facility path or an SQL CHECK constraint.

Also eliminate the DEPT-HEAD relationship. Integrity enforcement by the DBMS for
this one-to-one relationship is not critical to Commonweather Corporation.
Add indexes: Add the following indexes to enforce unique constraints:

= Anindex on SKILL based on SKILL NAME

= Anindex on COVERAGE based on COVERAGE TYPE, PLAN CODE, and EMP
ID

® Anindex on EMPOSITION based on JOB ID and EMP ID
® An index on EXPERTISE based on SKILL CODE and EMP ID

®  An index on NON-HOSP PROCEDURE based on NON-HOSP CLAIM ID and
PROCEDURE NUMBER

® Anindex on DENTAL PROCEDURE based on DENTAL CLAIM ID and PRO-
CEDURE NUMBER

Note: You will seein the next chapter how some of these indexes can be eliminated.

Add the following indexes to provide generic search capability:

® Anindex on JOB based on JOB TITLE

Chapter 12. Refining the Database Design 12-19



12.7 Refined data structure diagram for Commonweather Corporation

®  Anindex on EMPLQOY EE based on EMP LAST NAME

12-20 CA-IDMS Database Design



12.7 Refined data structure diagram for Commonweather Corporation

Refined data structure diagram:

JOB-TITLE-NDX DEPARTMENT OFFICE SKILL-NAME-NDX
ASC (JOB TITLE) U [ Ts58 Jcac | 82 | caLc ASG (SKILL NAME) U
DEPT 1D | v OFFIGE CODE | v
JOB SKILL
[ Teor]cac | |78 ]cAcC
JOB 1D [u DEPT-EMPLOYEE OFFICE-EMPLOYEE SKILL CODE [
FK (DEPT ID} FK (QFFICE CODE) ORG DEMOREGION
JOB-EMPGSITION SKILL-EXPERTISE
FK (JOB ID} FK (SKILL CODE)
JOB-NDX XP-NDX
ASC (JOB ID -
EMP ID} U i k’é‘é"fEEM"éPfAST NAME) i ASC (SKILL CODE
EMP-EMPOSITION EMP ID) U
FK EMP 1) i EMP FIRST NAME)
EMPOSITION EMPLOYEE EXPERTISE
[ Ta9 JcLusTERED [ Ti28]cac E&"F(’éﬁg’ﬁ%“% | T 1e]JcrusTered
EMP-EMPOSITION | EMP ID [u EMP-EXPERTISE | U
EMP-PROJECT
FK (EMP ID)
PROJECT
[ T8 [cric EMP-WORKER MANAGES-REPORTS-TQ
PRGIECTCOPE | U FK (EMP ID) FK (SUPR EMP ID)
i
WORKER EEF(’E(;AO')VEF;AGE INSURANCE PLAN
PROJECT-WORKER
FK (PROJECT CODE) | | 2cfcLustereq [ Tie]cac
PROJECT-WORKER | PLAN CODE [U
COV-NDX
ASC (PLAIN CODE COVERAGE TYPE
EMP ID) U

NHCLAIM-PRGC
FK {NON-HQSP CLAIM 1D}

COVERAGE
| Tso]cac
EMP-COVERAGE |
COVERAGE-NHC COVERAGE-dc
FK (PLAN CODE E}?VFES’:S%SSE FK (PLAN CODE
EMP ID} EM; D) EMP 1D)
! i
NON-HOSPITAL CLAIM HOSPITAL CLAIM DENTAL CLAIM
[ 304 JcLUSTERED | |310] cac [ Tie4] cac
COVERAGE-NHC | HOSPITAL CLAIM 1D| U DENTALCLAMID | y
INS-DEMO-REGION
DCLAIM-PROC

NON-HOSP-NDX
ASC (NON-HQSP CLAIM ID

PROCEDURE NUMBER) U

NON-HOSP PROCEDURE
| |85 [CLUSTERED
NHGLAIM-PROC |

FK {(DENTAL CLAIM 1Dy
PROC-NDX
ASC (DENTAL CLAIM ID)
PROCEDURE NUMBER) U
DENTAL PRGCEDURE

| Jas JcLUSTERED
DCLAIM-PROC |

Chapter 12. Refining the Database Design 12-21



12-22 CA-IDMS Database Design



Chapter 13. Choosing Physical Tuning Options

131 Overview . . . . . 13-3
13.2 Placement of entitiesinareas . . . . . .. ... ... L. 13-4
13.2.1 Segmentation of databases . . . . . . ... ... L 13-5
13.2.1.1 Segmenting by groups of entities . . . . . ... ... ... ... 13-5
13.2.1.2 Segmenting by logical key . . . ... ... ... ... 13-6
13.3 Data compression . . . . . ... 13-8
13.4 Relationship tuning options . . . . ... ... 13-11
13.4.1 Linked and unlinked relationships . . . . . . ... ... ... .... 13-11
13.4.2 Linked relationship tuning options . . . . . . . .. .. ... ... .. 13-12
13421 Typeof linkage . . ... . ... .. ... ... ... ... 13-12
13.4.2.2 Sorted and unsorted relationships . . . . ... ... ... . ... 13-15
135 Index key compression . . . . .. ... 13-17
13.6 Non-SQL tuning options . . . . . . . . . . ... ... 13-18
13.6.1 Multimember relationships . . . . .. ... ... . L. 13-20
13.6.2 Direct locationmode . . . . . . ... .. 13-24
13.6.3 Variable-length entities . . . . . . .. ... .. ... ... .. ... . 13-25
13.6.4 Database procedures . . . . . .. ... 13-27
13.6.5 CALC duplicatesoption . . . . ... ... ... ... ... ...... 13-27
13.6.6 Reationship tuningoptions . . . . .. ... ... ... .. ... ... 13-28
13.6.6.1 Nonsorted order . . .. ... ... ... ... .. .. ... ... 13-28
13.6.6.2 Additional sort options . . . . ... ... 13-30
13.6.6.3 Linkage . ... ... ... ... 13-32
13.6.6.4 Membershipoptions . . . .. ... ... ... ... ... .. .. 13-33
13.6.6.5 Removing foreignkeys . . . . ... ... ... .. ... ... 13-36
13.6.7 Index tuning options . . . . . . . ... ... 13-36
13.6.7.1 Unlinked versus linked indexes . . . . ... ... ... .. ... 13-36
13.6.7.2 Additional sort options for indexes . . . . . ... .. ... ... 13-37
13.6.7.3 Nonsorted indexes . . . . . ... .. .. ... ... ... 13-37
13.6.7.4 Index membership options . . . . .. ... ... ... .. ... . 13-38
13.6.8 Non-SQL entity and index placement . . . . ... ... . ... ... 13-38
13.7 Physica tuning options for Commonweather Corporation . . . . . . . .. 13-39
13.7.1 Refined Commonweather Corporation database design (for SQL
implementation) . . . . .. ... 13-40
13.7.2 Refined Commonweather Corporation database design (for non-SQL
implementation) . . . ... ... 13-42

Chapter 13. Choosing Physical Tuning Options 13-1



13-2 CA-IDMS Database Design



13.1 Overview

13.1 Overview

Physical tuning options: The following database options can be used to ensure
optimal performance in individual business transactions:

Placement of entities in areas — To facilitate certain processing operations, you
can instruct CA-IDMS/DB to divide the database into separate areas. Each area
can contain one or more entities.

You can also sometimes simplify application processing, recovery procedures, and
unload/load operations by segmenting the database

Data compression — To save disk space, you can instruct CA-IDMS/DB to com-
press data before it is stored and decompress it when it is retrieved.

Relationships and tuning options — When relating entities, you can establish
linked or unlinked relationships. Linked relationships can be used to optimize
performance in applications that process related entities.

Index key compression — To save disk space, you can instruct CA-IDMS/DB to
compress indexes.

Non-SQL tuning options

— Multimember relationships — A single relationship is maintained for mul-
tiple child entity types.

— Direct location mode — You can assign this location mode to an entity when
the application programmer must be able to explicitly specify the physical
location of entity occurrences in the database.

— Variable-length entities— You can collapse two entities involved in a one-
to-many relationship where the many entity can contain a variable number of
occurrences.

— Database procedures — You can write and compile database procedures to
be executed at application runtime when a program accesses an area or entity
to perform predefined programming functions such as data compression and
decompression.

— CALC duplicates options — You can specify options for nonunique CALC
keys specifying how these nonunique occurrences will be stored in the data-
base.

— Relationship tuning options — You can specify options as part of the defi-
nition of a relationship to specify the order of child occurrences, how the
occurrences will be linked with each other, how new occurrences are intro-
duced into the relationship and how existing occurrences can be modified.

— Index tuning options — You can specify options as part of the definition of
an index to provide for unlinking the index, the order in which entity occur-
rences will be referenced in the index, how new occurrences are introduced
into the index and how existing occurrences can be modified.

Each of these tuning options is described in detail below.

Chapter 13. Choosing Physical Tuning Options 13-3



13.2 Placement of entities in areas

13.2 Placement of entities in areas

Why separate entities: To facilitate certain processing operations, you can instruct
CA-IDMS/DB to divide the database into separate areas. Each area can contain one or
more entities. Y ou place database entities in separate areas to:

= Minimize processing interruptions that might be caused by backup and recovery
procedures. CA-IDMS/DB provides standard system utility programs that alow
the system operator to rollforward/rollback or dump/restore only those areas in a
database that require backup and recovery. Before performing backup and
recovery procedures, the operator typically varies each area or file that is currently
held in update usage mode to retrieval (or offline mode). Once an area has been
varied to retrieva or offline mode, further update processing is not allowed. By
assigning entities to separate areas, you can ensure that backup and recovery pro-
cedures impact the minimal number of applications.

»> For further information on backup and recovery, see CA-IDMS Utilities and
CA-IDMS Database Administration.

»  Reduce time required to perform maintenance activities (such as unload and
reload by area). By separating entities into separate areas, you make the amount
of data processed smaller which, in turn, reduces the time required for the proc-

essing.

» Reduce cluster overflow. The impact of large cluster sizes can be reduced by
separating one or more entity types into separate areas. This is especialy effec-
tive if less-frequently accessed entities are separated.

» Improve efficiency of serial processing. If an entity (or entities) is to be
retrieved mainly by area sweeps, that entity (or entities) should be assigned to a
separate area.

Guidelines: Consider the following general guidelines for assigning entities to data-
base areas:

. Whenever possible, place indexes in separate areas. If two or more indexes can
be accommodated by the same page size, you can place the indexes in the same
area. If using a non-SQL implementation, consider segregating each index in its
own page range, if they are in the same area if the indexes are restricted to sepa-
rate page ranges.

® In genera, you should store only one type of entity cluster in each area of a data-
base.

®  Nonclustered entities can be placed together in a separate area or can be included
in an area containing a cluster, provided that CALC overflow will not be a
problem.

13-4 CA-IDMS Database Design



13.2 Placement of entities in areas

13.2.1 Segmentation of databases

By segmenting the database, you can simplify application processing, recovery proce-
dures, and unload/load operations. CA-IDMS/DB alows you to create databases that
are segmented according to:

® Groups of entities

m Logical keys
13.2.1.1 Segmenting by groups of entities

To facilitate processing of the same data by different application programs, you can
create a database that is segmented by groups of entities, as shown below.

To create such a database, you assign entities to separate database areas and use only
unlinked (as opposed to linked) relationships between entities in different areas. See
"Linked and unlinked relationships' later in this chapter for further information on
types of relationships.

Database segmented by groups of entities:

Unsegmented database Segmented database
ORDER INVOIGE ORDER | I_ »| [INVOICE
ORDITEM INVITEM ORDITEM I INVITEM
ORDER-AREA ORD-AREA ' INV-AREA

Advantages: A database segmented by entity is advantageous because it:

»  Eliminates the need to perform maintenance for linked relationships that cross
areas and facilitates and shortens unload/reload operations.

® Allows certain application programs to remain active while parts of the database
are being recovered or restructured.

Considerations: Although a database segmented by entity can facilitate certain
processing functions, it can sometimes complicate processing of child entities. If an
application requires the ability to group child entities by parent, the DBMS must use
additional system resources to access the related entities that are stored in different
aress.

Chapter 13. Choosing Physical Tuning Options 13-5



13.2 Placement of entities in areas

13.2.1.2 Segmenting by logical key

Segmenting by logical key is used to separate a large non-SQL defined database into
identical segments based on the value of one or more data elements. For example, you
might separate employee data by company code; each company within
Commonweather Corporation having its own segment of the database.

Note: The key field on which the segmentation is performed may or may not actually

exist as a data element in some entity of the database.

Segmenting by key value in a non-SQL implementation: To segment by key
value in a non-SQL implementation:

1
2.
3.

Define a single schema which describes the database.
Define a set of subschemas associated with the schema.

Define a segment for each physical implementation of the database. Each segment
must contain the same named set of areas. Use separate page ranges or page
groups to distinguish each segment.

If necessary, define a database name for each segment including the corresponding
segment and additional segments for other data accessed by the application.

Provide a mechanism to direct each application program to the correct segment by
specifying the DBNAME or segment name on its BIND RUNUNIT statement.

Segmenting by key value in an SQL implementation: To segment by key
value in an SQL implementation:

1

Define a segment for each logical division of the database. Each segment must
contain the same named set of areas.

Define a schema for each logical division. Each schema will describe tables in
one of the segments.

Define the identical set of tables in each schema.
For each application, create a set of access modules, one for each schema.

Provide a mechanism to direct processing to the correct access module at runtime.

13-6 CA-IDMS Database Design



13.2 Placement of entities in areas

Database implementation by key value

PART

INVENTORY-AREA
Segment: PARTS

INVENTRY

*Although the company's Chicago and Los Angeles warehouses maintain
separate inventories, they share a common database due to common

processing.
PART PART
INVENTORY-AREA INVENTORY-AREA
Segment: CHPARTS Segment: LAPARTS
INVENTRY INVENTRY

*The company's Chicago and Los Angeles warehouses
maintain separate databases and use database name tables
to direct the programs to the corract area(s).

Advantages: A database implementation by key value is advantageous because it:

»  Simplifies recovery operations by permitting certain application programs to
remain active while parts of the database are being recovered or updated.

»  Facilitates and shortens unload/load operations.
» Allows for distribution of an organization's processing to multiple machines and

sites.

Considerations: While a database that is implemented by key value facilitates
certain processing functions, it complicates simultaneous processing of all segments.

In an SQL environment, you could create a view of al the tables at once to access all
segments at one time.

In anon-SQL environment, you would have to bind concurrent run units to access all
segments at one time. An aternative is to bind rununits serialy.

Chapter 13. Choosing Physical Tuning Options 13-7



13.3 Data compression

13.3 Data compression

Conserving disk space: To conserve disk space, you can instruct CA-IDMS/DB
to compress data before storage and decompress it after retrieval. There are three
ways to compress and decompress data:

» CA-IDMS Presspack
» |IDMSCOMP and IDMSDCOM database procedures
m  User-written procedure

These procedures are invoked automatically by the DBMS as data is stored and
retrieved.

Note: Only CA-IDMS Presspack is available for SQL-defined data.

Advantages and disadvantages of data compression: The following table
summarizes the advantages and disadvantages of data compression.

Efficiency consider- Potential impact
ations
/O By compressing an entity, you conserve storage resources,

allowing the system to fit more entities on each database
page. If you can fit al entity occurrences associated
through a particular relationship on a single page, the
system will only perform one I/O to access these entities.

CPU time Compressing data requires some extra CPU time to perform
compression/decompression processing.

Space management Compression can be used to conserve considerable amounts
of storage.

Contention No difference.

Considerations for using CA-IDMS Presspack: CA-IDMS Presspack uses
Huffman techniques to compress database entities. The techniques include assigning
unique bit string codes of different lengths to single character and character strings.
These codes substitute for the character and character strings in the entities.

To assign the codes, CA-IDMS Presspack uses character and character-string frequen-
cies of occurrence. It assigns shorter codes to the most frequently occurring characters
and character strings. To those that occur less frequently, CA-IDMS Presspack assigns
longer codes.

CA-IDMS Presspack compresses both textual and nontextual data.

»» For further information about CA-IDMS Presspack, see CA-IDMS Database
Administration and CA-IDMS Presspack User Guide.

13-8 CA-IDMS Database Design



13.3 Data compression

Considerations for using IDMSCOMP and IDMSDCOM: IDMSCOMP and
IDMSDCOM are supplied with CA-IDMS/DB. They are placed in the load (core-
image) library at installation time and are also provided in source form so you can
modify them if necessary. You can aso write your own database procedure or use
other commercially available compression/decompression procedures.

»» For further information about database procedures, see CA-IDMS Database
Administration.

To compress data, IDMSCOMP performs the following conversion procedures:

»  Converts repeating blanks into a 2-byte code.

»  Converts repeating binary zeros into a 2-byte code.

»  Converts other repeating characters into a 3-byte code.

m Converts any of a number of commonly used character pairs into a 1-byte code.
Data that does not fall into any of the above categories remains unchanged. Each

group of unchanged data is prefixed by a 2-byte code. The following diagram shows
the compression of contiguous blanks in an entity.

Decompressed
DATA BLANKS DATA BLANKS DATA
Compressed
DATA DATA DATA
LData refix )
LDa‘ra prefix P T_ LData prefix

Caode for repealing blanks
ode for repeating blanks

Considerations for user-written procedures: If writing your own compression
procedures, you must follow conventions for writing database procedures.

»» For information on database procedures, see CA-IDMS Database Administration.

Guidelines for compression: Consider the following guidelines when deciding
whether data should be compressed:

= When determining whether or not to compress/decompress an entity, you should
consider whether the disk space saved justifies the CPU overhead incurred by the
routines.

® The control portion of an entity is not compressible.

The control portion of an entity includes all data elements up to the last key
(CALC, sort, index). Since this portion of an entity is not compressible, it may
mean that not enough compressible data exists to justify compression.

Chapter 13. Choosing Physical Tuning Options 13-9



13.3 Data compression

»  Use compression/decompression procedures for entities that are not updated often.
While the compression procedures save considerable disk space, it uses additional
CPU time to perform its processing.

= Do not compress entities that start with large groups of repeating characters but
lose them over time.

= |IDMSCOMP/IDMSDCOM considerations

— IDMSCOMP and IDMSDCOM compression procedures operate most effi-
ciently for entities whose occurrences usualy contain sizable portions of
blanks or binary zeros.

— Don't use this compression for entities containing only small scattered groups
of repeating characters.

— Datathat is stored in packed decimal format is not a good candidate for data
compression.

Storage mode: If you decide to compress data in an entity, you should add a
storage mode of C for the entity on the data structure diagram.

OFFICE
c| |

13-10 CA-IDMS Database Design



13.4 Relationship tuning options

13.4 Relationship tuning options

What is a relationship?: Entity occurrences are related to one another if the
foreign key in a child occurrence has the same value as the primary key in a parent
occurrence. You identified relationships in the logical database design process.

13.4.1 Linked and unlinked relationships

Linked and unlinked: When implementing these relationships, there are a number
of physical tuning options from which to choose. You have aready decided whether a
relationship is a clustering relationship or not. Y ou must now decide whether to
define the relationship as linked or unlinked

= A linked relationship is one in which related entity occurrences are linked to one
another through embedded pointers.

= An unlinked relationship is one in which no embedded pointers are used to link
related entity occurrences.

Advantages of linked relationships: Linked relationships have the following
advantages:

®  Since there is direct linkage between parent and related child occurrences, linked
relationships provide the most efficient means (in terms of CPU and 1/0O) of
retrieving related entity occurrences.

»  Unlinked relationships require that a CALC key or index be defined on the foreign
key of the child entity.

®  Anindex adds both CPU and I/O to retrieve data and maintain the index. It also
requires additional storage space.

® Defining a CALC key on the foreign key is almost as effective as using a linked
relationship provided that it does not cause CALC overflow conditions, which
increases |/O, CPU, and contention. However, you can define only one CALC
key per entity, so that an entity participating as a child in more than one relation-
ship must use indexes for all but one unlinked relationship.

» Linked relationships provide an ordering option which can reduce the need for
additional indexes to enforce unique constraints and avoid sorting of retrieved
information.

Considerations: Keep the following considerations in mind when using linked and
unlinked relationships.
»  Self-referencing relationships must always be unlinked

»  Linked relationships require physical restructuring of entity occurrences to add or
remove relationships

®  The time required for and impact of maintenance operations, such as unload/reload
can be reduced if relationships between entities in different areas are unlinked.
This is particularly important in designing large databases.

Chapter 13. Choosing Physical Tuning Options 13-11



13.4 Relationship tuning options

Non-SQL considerations: In anon-SQL environment:
®  There is no integrity enforcement by the DBMS with an unlinked relationship.
Integrity must be enforced by applications or logical record facility path logic.

® There is no relationship clustering with an unlinked relationship. You must use
CALC clustering to achieve results similar to clustering.

Note: If CALC clustering results in long CALC chains, CPU, 1/Os, and contention
may all increase.
You can eliminate foreign keys from child entities if the relationship is linked. This:
®  Reduces storage requirements
»  Eliminates the need to update each child occurrence if the parent's key is changed
For example, if you change the value of DEPT ID in a department, related
employees do not need to be updated.
If you choose to retain the embedded foreign keys, you:
»  Have full update SQL access to the data

® Will reduce the number of 1/Os required to retrieve foreign key values for non-
clustered entities (for example, to retrieve the department 1D of an employee)

13.4.2 Linked relationship tuning options

In designing a linked relationship, you specify the following options:
» Type of linkage (chained or indexed)
»  Relationship ordering (sorted or unsorted)

»  Sort options (order and uniqueness)
13.4.2.1 Type of linkage

CA-IDMS/DB supports the following types of linked relationships:

®» Chained — The DBMS maintains relationships based on internal information
stored in the prefix of each entity occurrence. This information in the prefix con-
tains the db-key of the logically next occurrence in the relationship.

®  |ndexed — The DBMS maintains relationships through an index between a parent
and related child occurrences. The bottom level of the index contains the db-keys
of the related child occurrences. Each child occurrence contains an index pointer
that points to the bottom level of the index.

13-12 CA-IDMS Database Design



13.4 Relationship tuning options

-
=
e \
-

Guidelines: As ageneral rule, use indexed for nonclustered relationships and
chained for clustered relationships.

An indexed nonclustered relationship requires fewer 1/Os to add or remove an entity
occurrence than a chained nonclustered relationship. This is because the adjacent
entity occurrences are not updated; only the index structure needs to be updated. In
addition, fewer 1/Os are required to retrieve a child occurrence by key in a nonclus-
tered relationship if it is indexed rather than chained.

A chained relationship, on the other hand, requires less CPU overhead for mainte-
nance and retrieval than an indexed relationship. It aso requires less storage space
because there is no index structure. For these reasons, it is a better choice than
indexed for clustered relationships because 1/Os are not generally a concern.

Note: For databases implemented with SQL, all linked clustered relationships are
chained and &l linked nonclustered relationships are indexed.

»» For further information on the structure of indexed relationships, see Chapter 15,
“Determining the Size of the Database” on page 15-1.

»» For further information on indexed relationships, see CA-IDMS Database
Administration.

A comparison of indexed and chained relationships: The following table
presents a comparison of indexed relationships and chained relationships.

Chapter 13. Choosing Physical Tuning Options 13-13



13.4 Relationship tuning options

Efficiency consider- Potential impact
ations
/10 Indexed relationships often require fewer 1/O operations to

access child entities in nonclustered relationships, especially
if the relationship is sorted.

CPU time Chained relationships use less CPU time for processing of
child entities than indexed relationships.

Space management Chained relationships require less storage space than
indexed relationships.

Contention No difference

Representing an indexed relationship: To represent an indexed relationship:
= Name the relationship
n  Specify whether the order is ASCending or DEScending for each key
®  |dentify the data element name(s) to be indexed

» Specify whether duplicate indexed items are allowed (blank) or not allowed (U for
unique)

®  Specify whether the index key is to be compressed
The following diagram shows the standard CA-IDMS/DB notation for an indexed

relationship. The index allows the DBMS to access all EXPERTISE occurrences asso-
ciated with a particular skill based on skill level in descending order.

SKILL
| [ [eac
SKILL CODE u

SKILL-EXPERTISE
DES (SKILL LEVEL)

EXPERTISE
| | 16 |CLUSTERED
EMP-EXPERTISE

13-14 CA-IDMS Database Design



13.4 Relationship tuning options

13.4.2.2 Sorted and unsorted relationships

You can specify the logical order of child occurrences within each linked relationship:

® Sorted — A new entity occurrence is positioned according to the value of one or
more of its data elements (called a sort key) relative to the values of the same data
elements in other related child occurrences.

®» Unsorted — A new entity occurrence is positioned according to a predefined
order within the relationship.

For example, all new entity occurrences might be positioned ahead of all existing
occurrences.
Advantages of a sorted relationship: Through a sorted relationship:
m A program can retrieve a child occurrence directly by key, thus reducing CPU
= A program can retrieve child occurrences data in order thus avoiding sorts
»  Unique constraints can be enforced without the need for additional indexes
Considerations for sorted relationships: Maintaining the relationship's order

during update operations requires increased CPU and a greater number of 1/Os than an
unsorted relationship.

Enforcing unique constraints: Sorted relationships can be used to enforce unique
constraints as an alternative to a CALC key or index. For example, you can eliminate
the EXP-NDX index in the Commonweather Corporation by defining either the

SKILL-EXPERTISE or the EMP-EXPERTISE relationship as a unique sorted relation-

ship.
EMPLOYEE EXPERTISE
| |122 |caic | |16 |cLusreren
EMP ID lu EMP-EXPERTISE | EmP-EXPERTISE
FK (EMP ID)
ASC (SKILL CODE
EMP ID) U

To eliminate the index, you must either:
n Define SKILL-EXPERTISE as sorted on EMP ID with the unique option
or

n Define EMP-EXPERTISE as sorted on SKILL CODE with the unique option
Either approach ensures that no employee is assigned duplicate skills.
Sorted order: You can choose to sort in ascending, descending, or mixed order.

As a general rule, choose the sort order to reflect the most commonly desired retrieval
order. However, the sequence chosen for a chained relationship can have an impact on

Chapter 13. Choosing Physical Tuning Options 13-15



13.4 Relationship tuning options

performance in update transactions. This will allow the DBMS to locate the point of
insertion more quickly.

If new entity occurrences typically have sort key values greater than existing occur-
rences, the relationship should have a descending sort order. Conversely, if new
occurrences have sort keys lower than existing occurrences, ascending is preferable.

For example, new occurrences of dated entities are usually stored with higher dates
than previously stored occurrences. If this is the case, you should specify descending
for a chained relationship sorted by date.

ASCENDING DESCENDING

13-16 CA-IDMS Database Design



13.5 Index key compression

13.5 Index key compression

To conserve disk space, you can instruct CA-IDMS/DB to compress an index key
before storage and decompress it after retrieval. The index key is compressed in the
same way that data is compressed. (See "Data compression” earlier in this chapter.)

Chapter 13. Choosing Physical Tuning Options 13-17



13.6 Non-SQL tuning options

13.6 Non-SQL tuning options

Sorted relationship considerations: When you store an entity occurrence in a
sorted chained relationship, the DBMS searches the relationship in the next direction,
starting with the current entity occurrence. If the new occurrence cannot be inserted in
the next direction, the DBMS establishes currency on the parent entity occurrence and
begins the search from this occurrence (moving in the next direction). When you store
an entity occurrence in a sorted indexed relationship, the DBMS searches the occur-
rences starting from the top of the index structure.

Note: If the DUPLICATES FIRST option is specified for a sorted relationship and
the key of the current entity of set is equal to the key of the entity to be stored,
the DBMS must begin its search for the insertion point from the owner entity.

Store operations are executed most efficiently when the new entity can be inserted
either at the very beginning or the very end of the relationship. If new entities are
consistently stored in ascending order, you should perform one of the following proce-
dures to ensure that insertions of new entity occurrences into the relationship will be
performed efficiently:

® Assign the descending sort sequence to the relationship. In this case, the
seguence in which entities are sorted in the relationship is the opposite of the
seguence in which new entities are added, as shown below.

13-18 CA-IDMS Database Design



13.6 Non-SQL tuning options

1. First load

Add: B17
B15
B13

B11

2. Single occurrence insertion

Add: B19

*Insertion point for next record

Note: When you write a program to perform the initial load of the database, plan
to sort the entities in the same order as the relationship order to optimize
processing efficiency. For example, if dated entities are maintained in a
relationship that is sorted in descending order, sort the initial load file in
descending order before performing the load.

» |f you have the option to sort input entities before executing the store operation,
you may want to define the sort order as ascending and allow the programmer to
issue program statements that optimize efficiency. In this case, you should ensure
that the programmer establishes currency at the end of the relationship before
issuing the store statement command:

Chapter 13. Choosing Physical Tuning Options 13-19



13.6 Non-SQL tuning options

FIND OWNER
FIND LAST IN SET
STORE

Remember that you must include PRIOR pointers if you plan to let programmers
issue FIND/OBTAIN LAST statements against a chained linked relationship.
Without PRIOR pointers, the DBMS must walk the entire linked relationship in
the next direction to access the LAST entity.

For more information on pointers, see "Linkage" later in this chapter.

If input entities are consistently stored in descending order, perform one of the fol-
lowing procedures:

» Assign the ascending segquence to the relationship.
»  Have programmers establish currency at the beginning of the relationship before
issuing the store command:

FIND OWNER
STORE

»» For further information on the DML statements used to access the database, see
CA-IDMS DML Reference — COBOL.

Representing a sorted relationship: Represent a sorted relationship on the data
structure diagram by specifying ASC or DES and the name of the sort key as part of
the relationship specification.

EMP-EXPERTISE
EMPLOYEE FK (EMP D) EXPERTISE
| Jizs|onc DES (SKILL CODE) U | ]is cLusteren
EMP ID u EMP-EXPERTISE
EMP-DEMO-REGION EMP-DEMG-REGION

There are additional tuning options available to non-SQL implementations. These are
described in this chapter.

13.6.1 Multimember relationships

What is a multimember relationship: A multimember relationship is a single
relationship maintained for more than one child entity type.

13-20 CA-IDMS Database Design



13.6 Non-SQL tuning options

COVERAGE

NON-HOSPITAL CLAIM HOSPITAL CLAIM DENTAL CLAIM

GCOVERAGE

NON-HOSPITAL CLAIM HOSPITAL CLAIM DENTAL GLAIM

Multimember relationships eliminate the overhead of carrying pointers (db-keys) in the
parent entity for additional relationships.

However, to retrieve specific entity occurrences in multimember relationships,

CA-IDMS/DB often must access occurrences of unwanted entity types.

Guidelines: Generally, multimember relationships should be used only when:
» The different child entity types are usually processed together.

For example, since the ACCOUNT, INVOICE, and PAYMENT entities are
usually processed together, you might want to create a multimember relationship
to relate these entity types, as shown below.

Chapter 13. Choosing Physical Tuning Options 13-21



13.6 Non-SQL tuning options

ACCOUNT

_

7

.

Applications that use this accounts receivable structure generate statements that
contain details of an account's invoices and payments since the last statement, in
order by date. If the INVOICE and PAYMENT entities are maintained in sepa-
rate relationships, an application program will have to merge them into the proper
sequence. If the entities are maintained in one relationship, they are already in
order.

»  The different child entity types are mutually exclusive.

Suppose each employee in a corporation is paid on either an hourly or salaried
basis. You may want to create a multimember relationship to relate the
EMPLOYEE, HOURLY, and SALARIED entities, as shown below.

EMPLOYEE

R ELLLBTTE
Dedede20 20202 %% % %X
Dodededed0 2020 %6 %6
SREIRIAEKK
RIS

&
SIBTIEEIASKLS,
LA LIALEEL
EEILLELLS:
et e tete e 00 Sete%

AT
LD
ERKLEEBEN
(126200205652
bleteteteled!
AR
e%e%eteTe%0%%
olelelete%ed¢’
odedelete%e%?
fo20d020%e%
KR

XK

13-22 CA-IDMS Database Design



13.6 Non-SQL tuning options

»  Child entities are of many types, but each child entity type has only a few
OCCuUrrences.

In an auto insurance database, a policy may have many riders, each requiring a
different format. However, most policies have no more than a few riders attached.
If a relationship were maintained between a policy and each potential rider, the
policy entity would require at least five sets of pointers, most of them unused,
instead of one, as shown below.

POLICY ote.

CB ANTIQUE SPORTS WIRERIMS

MARTIN

In all other cases, you should maintain a separate relationship for each entity type.

Considerations
= A multimember relationship cannot be an indexed relationship.

®»  When accessing a multimember relationship through the logical record facility,
only one of the child entity types can be accessed in each pass through the
relationship. This means that several passes through a relationship may be neces-
sary to access all child entity types.

»» For further information on accessing a multimember relationship through a
logical records, see the CA-IDMS Logical Record Facility.

»  Multimember relationships should not include both clustered child entity types and
nonclustered child entity types. If both types of entities are included in a multi-
member relationship, 1/0O performance will be degraded. The system may have to
perform additional 1/Os to access the clustered child entity occurrences (because
the nonclustered child occurrences are distributed throughout the database).

Chapter 13. Choosing Physical Tuning Options 13-23



13.6 Non-SQL tuning options

A comparison of multiple relationships and multimember relationships:
The following table presents a comparison of multiple relationships and multimember

relationships

Efficiency consider- Potential impact

ations

/0 No difference

CPU time Multimember relationships may require more CPU time to
process related entities than multiple relationships.

Space management Multimember relationships eliminate the overhead of car-
rying pointers in the parent entity for extra relationships.

Contention In some situations, multimember relationships may cause

more entity contention than multiple relationships. If an
entity that participates in a multimember relationship is
updated often, locking of a modified occurrence of this
entity by one transaction may prevent other transactions
from accessing occurrences of other entities in the relation-
ship. Therefore you may want to create a separate relation-
ship for a frequently-updated entity.

13.6.2 Direct location mode

In rare situations, the application program has to have control over an entity's place-
ment in the database. If the application programmer must be able to identify explicitly
the location of entity occurrences in the database, you should assign the direct location
mode to the entity type. This location mode provides programmers with rapid access
to database entities and allows them to control the clustering of entities.

Store entities chronologically: Use direct location mode to store entities
chronologically. The direct location mode can be used to arrange entity occurrences
seridly in a database area. The programmer can arrange entities serially by instructing
CA-IDMS/DB to store each entity on the same page as the preceding entity.
CA-IDMS/DB either stores the entity on the same page or on the next page(s), as
space availability permits.

Ensure effective clustering: Use the direct location mode to ensure effective
clustering. If a child entity has two different parent entities, you may want to take
responsibility for clustering occurrences of the child entity. Suppose occurrences of
entity C are related to an occurrence of entity A in some instances and by an occur-
rence of entity B in other instances. You would need to be able to cluster each occur-
rence of C with its appropriate parent entity (an occurrence of either A or B).

You can achieve effective clustering in this situation by assigning the direct location
mode to entity C and the OM (optional manual) membership option to both relation-
ships. Whenever a C entity occurrence must be stored in the database, the application

13-24 CA-IDMS Database Design



13.6 Non-SQL tuning options

programmer can then connect the entity to its appropriate relationship and cluster the
entity with its parent.

For more information on membership options, see "Membership options" later in this

chapter.
A B
A-C B-C
OM QM
{optional manual) (optional manual)
C
{stored
DIRECT)

However, you should also plan on writing your own unload and reload program for the
C entity, since the DBMS does not know how to locate C entities.

Considerations: If the direct location mode is chosen, the entity should either be a
child in a relationship or have an index defined on it. If neither of these is true, the
only method to access an occurrence is through an area sweep. In most cases, clus-
tering around an index or a relationship is a better storage strategy.

Representing the direct location mode: Represent the direct location mode on
the data structure diagram by specifying DIRECT for the location mode. Do not name
a CALC key or arelationship.

13.6.3 Variable-length entities

Use a repeating element in a variable-length entity instead of two separate entity types
when:

»  The many portion of the relationship does not participate in other relation-
ships. Once you have created a repeating data el ement, you cannot relate the data
in this element to other entity types.

» The number of repetitions is not static. In general, use a variable-length entity
when the average number of the entity's repeating groups actually used is less than
75% of the maximum number of repetitions. Otherwise, use a fixed-length entity
to store the repeating group. (The 75% figure is a general guidelines. You should
consider actual disk space savings.) See Chapter 12, “Refining the Database
Design” on page 12-1 for information on fixed-length entities.

Note: Each entity can have only one variably repeating data element.

®  SQL accessto the repeating information is not a requirement.

Chapter 13. Choosing Physical Tuning Options 13-25



13.6 Non-SQL tuning options

If you intend to use SQL to retrieve information from the database, you may not
want to create variable repeating data elements because you will not be able to
access the variable portion through SQL.

You must include a counter element in the entity to indicate the current number of
occurrences of the repeating data element in each entity occurrence.

If you decide to create a repeating data element in a variable-length entity, be sure to

change the length of the entity on the data structure diagram. Additionally, change the
storage mode of the entity to V (variable).

Preliminary design:

NON-HOSPITAL GLAIM NON-HOSPITAL GLAIM
| | 304] cac

NON-HOSP GLAIM 1D | U

763297 062385 1234

I I NON-HOSPITAL PROCEDURE

NHCLAIM-PROC

L
I 777200 763297
FK (NONHOSP CLAIM ID)

— _‘390020 |763297 | ‘

NON-HOSPITAL PROCEDURE
| [ 85 | onc
NONHOSP CLAIM NUM |

I
I
I NON-HOSPITAL PROCEDURE
I
I NON-HOSPITAL PROCECURE

‘ 400030 763297 | . ‘

i

Foreign key

—_ —

Refined design:

NON-HOSPITAL CLAIM

1008| CALC

NON-HOSP CLAIM ID | U

763297 062385 1234 777300] ... 390020] ... 400430

Severa entities in the Commonweather database may be converted to repeating ele-
ments in variable-length entities. The NON-HOSPITAL PROCEDURE and DENTAL
PROCEDURE entities should be made repeating elements because they each partic-
ipate in only one relationship and occur a limited number of times:

» The NON-HOSPITAL PROCEDURE entity can be converted to a repeating
element in the NON-HOSPITAL CLAIM entity.

» The DENTAL PROCEDURE entity can be converted to a repeating element in the
DENTAL CLAIM entity.

13-26 CA-IDMS Database Design



13.6 Non-SQL tuning options

13.6.4 Database procedures

Database procedures are special-purpose subroutines designed to perform predefined
programming functions such as data compression and decompression. Y ou write and
compile these procedures as subroutines that are executed at application runtime when
a program accesses an area or entity. Database procedures have access to the entire
data portion of the entity occurrence.

The time a procedure is to be called is specified in the schema. At runtime, these
procedures are called automatically; the call is transparent to the application program.

Common uses: Database procedures are typically used to perform the following
functions:

»  Compression and decompression

» Data validation

®  Privacy and security

®  Data collection

»  Determination of record length for variable-length native VSAM records

»» For complete information on coding and using database procedures, see CA-IDMS
Database Administration.

13.6.5 CALC duplicates option

You can specify options for nonunique CALC keys indicating how these nonunique
occurrences will be stored in the database. You can specify duplicates first or dupli-
cates last

» Duplicates first — The duplicate entity occurrence will be logically placed in the
database before the entity occurrence already having that CALC key.

® Duplicates last — The duplicate entity occurrence will be logically placed in the
database after the entity occurrence already having that CALC key.

® Duplicates not allowed — Duplicates not allowed in the non-SQL definition is
equivalent to unique.

Chapter 13. Choosing Physical Tuning Options 13-27



13.6 Non-SQL tuning options

DUPLICATES LAST

UNIQUE
(DUPLICATES NOT ALLOWED

13.6.6 Relationship tuning options

There are additional tuning options available for relationships in the non-SQL environ-
ment.

13.6.6.1 Nonsorted order

If the entity occurrences in the relationship are not to be sorted, you can specify the
logical order of child entity occurrences within each occurrence of a relationship. You
determine how a new child is placed in a relationship by specifying one of the fol-
lowing orders:

® FIRST creates a LIFO (last in, first out) order. The new entity is positioned at
the beginning of the relationship.

m LAST creates a FIFO (first in, first out) order. The new entity is positioned at the
end of the relationship.

n NEXT creates asimple list. The new entity is positioned immediately after the
current (most recently accessed) entity. The NEXT order is recommended as a
default.

® PRIOR creates areverse list. The new entity is positioned immediately before
the current entity.

Flexibility: The NEXT and PRIOR orders provide more flexibility than the FIRST
and LAST options; the programmer can connect an entity anywhere within the
relationship by establishing currency before or after the point of insertion. When the

13-28 CA-IDMS Database Design



13.6 Non-SQL tuning options

FIRST and LAST options are assigned, the programmer can be certain of the posi-
tioning of new entities, regardless of set currency.

Note: The PRIOR and LAST options require prior pointers.
For more information on pointers, see "Linkage" later in this chapter.

Next and prior order example: In the example below, assume that a program is
positioned on SANDY SHORE before it stores JUNE MOON in the database. In a
relationship defined with the NEXT order, JUNE MOON will be stored after SANDY
SHORE. In arelationship defined with the PRIOR order, JUNE MOON will be stored
before SANDY SHORE.

ORIGINAL NEXT

PRIOR

First and last order example: Suppose two entities are added in the following
order: PETER PLUM, then SANDY SHORE. In a relationship defined with the
FIRST order, the entity stored most recently (SANDY SHORE) will be returned first.
In a relationship defined with the LAST order, the entity stored first (PETER PLUM)
will be returned first.

Chapter 13. Choosing Physical Tuning Options 13-29



13.6 Non-SQL tuning options

Peter Peter
Plum Plum

13.6.6.2 Additional sort options

Standard and natural collating sequence: You can specify either of two col-
lating sequences for sorted relationships:

» Standard collating sequence for sorted relationships orders key fields based on
their EBCDIC collating sequence without regard to data type.

»  Natural collating sequence for sorted relationships orders key fields based on their
data type. This means that negative numeric values will collate lower than posi-
tive values.

In the example below, assume that the values are packed or zoned decima numbers.
They are ordered first using the natural collating sequence and then using the standard
collating sequence.

Natural Standard
-4268.50 15.26
-351.78 144.83
-258.00 -258.00
15.26 -351.78
144.83 2594.38
2594.38 -4268.50

Duplicates options: You can specify options for relationships indicating how non-
unique occurrences will be logically placed in a sorted relationship. You can specify
duplicates first or duplicates last

» Duplicates first — The duplicate entity occurrence will be logically placed in the
relationship before the entity occurrence already having that sort key

13-30 CA-IDMS Database Design



13.6 Non-SQL tuning options

® Duplicates last — The duplicate entity occurrence will be logically placed in the
relationship after the entity occurrence already having that sort key.

Duplicates not allowed in the non-SQL definition is equivalent to unique.

A relationship can be sorted in either ascending or descending order. The duplicates
option for a sorted relationship determines what happens when a user tries to store an
entity with a duplicate sort key value.

You can order the sorted relationship entity occurrences with duplicate key values as
duplicates first, duplicates last, as discussed above, or in child db-key sequence.
This option speeds retrieval by reducing 1/0.

Use sorted relationships to simplify programming: Sorted relationships sim-
plify programming effort by allowing the programmer to specify a symbolic key value
for storage, retrieval, and positioning of an entity occurrence in the database. By using
sorted relationships, the programmer need issue only one DML statement to locate an
entity in the database. To locate an entity in a FIRST, LAST, NEXT, or PRIOR
relationship, the programmer must walk the relationship by issuing several DML state-
ments.

The diagram below shows the use of sorted relationships to simplify programming.

A
Starting
currancy e
Unsorted Sorted
0200-GETREC. 0200-GETREC.
OBTAIN NEXT B WITHIN A-B. MOVE 'B15' TO B-KEY.
IF DB-END-OF-SET OBTAIN B WITHIN A-B USING B-KEY.
THEN GO TO ©0900-NOREC. IF DB-REC-NOT-FOUND
PERFORM IDMS-STATUS. THEN GO TO 0900-NOREC.
IF B-KEY NOT = 'B15' PERFORM IDMS-STATUS.

THEN GO TO 0200-GETREC.

Use sorted relationships to enhance online or batch processing: Since sort
routines incur considerable CPU overhead, they are rarely used in online programs.
Sorted relationships are therefore useful for sequencing data for online display. They
are also useful in the batch environment: a batch program can process sorted input
transactions very efficiently in sorted relationships.

Chapter 13. Choosing Physical Tuning Options 13-31



13.6 Non-SQL tuning options

13.6.6.3 Linkage

Each entity in the database carries one, two, or three pointers for each chained
relationship in which it participates. You should usualy include all allowable pointers
for each entity:

®» Next pointer — Required for al relationships in which the entity participates as
parent or child; the next pointer is the database key of the next entity in the
relationship. The last child entity in a relationship points to the parent.

® Prior pointer — Optional for all relationships in which the entity participates as
parent or child; the prior pointer is the database key of the prior entity in the
relationship. The first child entity occurrence in a relationship points to the
parent.

® Owner pointer — Optional for all relationships in which the entity participates as
a child; the parent pointer is the database key of the parent entity occurrence.
Omitting prior pointers: Prior pointers can be omitted under the following condi-
tions:

®  Child entity occurrences in the relationship will not be erased or disconnected
except by walking the set.

» Child entity participates as a child in no other relationship.

® Order is hot LAST or PRIOR (see "Nonsorted order" above).

» The FIND/OBTAIN LAST or FIND/OBTAIN PRIOR DML functions will not be

used for the relationship.

Omitting owner pointers: Owner pointers (db-keys pointing to the parent) can be
omitted under the following conditions:

m The parent will not be accessed from a child occurrence.

» The FIND/OBTAIN OWNER DML function will not be used for the relationship.

Note: Be sure to include an OWNER pointer for any entity that participates as a
child in more than one relationship since the child entity is probably an entity
created to implement a many-to-many relationship. In this case, the system
will most likely need to access parent entities from the child entities regularly.

Pointers in indexed relationships: The parent of an indexed relationship has the
following mandatory pointers:

. Next pointer — Points to the first occurrence of an SR8 entity (an interna entity
used to hold the index)

® Prior pointer — Points to the last occurrence of an SR8 entity

For further information on the structure of an index, see Chapter 15, “Determining the
Size of the Database” on page 15-1.

13-32 CA-IDMS Database Design



13.6 Non-SQL tuning options

The child entity occurrence of an indexed relationship has one mandatory and one
optional pointer:
® Index pointer — This pointer is required; it is used to access the SR8 entity that
owns a particular child entity occurrence.

»  Owner pointer — This pointer is optional; it points to the parent of the relation-
ship

»» For further information on the structure of indexed relationships, see Chapter 15,
“Determining the Size of the Database” on page 15-1.

»» For further information on indexed relationships, see CA-IDMS Database
Administration.

Representing linkage: Represent relationship linkage on the data structure diagram
by identifying the pointers to be used. For example, specifying NPO indicates that
next, prior, and owner pointers are to be used.

EMP-EXPERTISE
EMPLOYEE NPO EXPERTISE

I I 122 ICALC DES (SKILL CODE} U I IB ICLUSTERED
EMP-ID 5] EMP-EXPERTISE
EMP-DEMO-REGION EMP-DEMO-REGION

For an indexed relationship, specify | or 10.
13.6.6.4 Membership options

Membership options determine how an entity is connected to and disconnected from a
relationship. These options affect the use of the DML STORE, CONNECT, DISCON-
NECT, and ERASE statements.

Y ou define membership options in two parts. The first part indicates the manner
(mandatory or optional) in which the entity is disconnected from a linked relation-
ship. The second part indicates the manner (automatic or manual) in which the entity
is connected to a linked relationship.

Disconnect options: The disconnect options operate as follows:

® Mandatory — A child occurrence cannot be disconnected from the relationship
without also being erased from the database (that is, the DML DISCONNECT
verb cannot be issued against entities in the relationship).

® Optional — A child occurrence can be disconnected from a relationship by the
DISCONNECT verb. The entity occurrence remains in the database and is acces-
sible in other ways; it can be connected to another relationship.

The mandatory/optional membership specification affects the outcome of the DML
ERASE statement. If any of the ERASE options (PERMANENT, SELECTIVE, ALL)

Chapter 13. Choosing Physical Tuning Options 13-33



13.6 Non-SQL tuning options

is specified when an ERASE statement is issued against an entity, al mandatory enti-
ties owned by that entity are also erased. Optional child entity occurrences are left as
is, disconnected, or erased, depending on the ERASE option specified.

Mandatory disconnect: The disconnect option is usually specified as manda-
tory. However, do not specify the mandatory disconnect option when:

®  An application requires the ability to dissociate a child entity occurrence from its
parent (usualy with the intention of associating the child with another parent
occurrence). At Commonweather Corporation, employees sometimes need to be
transferred from one department to another. Therefore, the disconnect option for
the DEPT-EMPLQY EE relationship must be specified as optional.

Caution: Be careful when using the optional disconnect option for child entities
of arelationship stored clustered around that relationship. If the entity is
later disconnected from its original parent and connected to another,
CA-IDMS/DB does not physically relocate the entity; for all practical pur-
poses, that entity is no longer clustered around its parent.

»  An application requires the ability to erase a parent entity without erasing the
child entities (using the ERASE PERMANENT and ERASE SELECTIVE func-
tions). Suppose the Commonweather Corporation decides to close an office in a
certain city. In this case, the office should be erased, but the employees who
work in that office should not be erased.

Connect options: The connect options operate as follows:

»  Automatic — The membership of an entity in a relationship is established auto-
matically by the DBMS whenever a child occurrence is stored in the database.

»  Manual — The membership of an entity in a relationship is not established when
a child occurrence is stored. Membership must be established explicitly by using
the DML CONNECT statement.

Disconnect and connect options are combined to form membership options:

= MA — Mandatory automatic

= MM — Mandatory manual

® OA — Optional automatic

= OM — Optional manual

Automatic connect: The connect option is usually specified as automatic.
However, do not specify the automatic connect option when:

®  An application requires the ability to store a child entity without associating it
with any parent. For example, at Commonweather Corporation, an employee can
join the company without first being assigned to a department. Therefore, the
manual option must be specified for the DEPT-EMPLOY EE relationship.

» |f two relationships exist between the same two entities representing a self-
referencing relationship, only one of the relationships can be automatic; the other

13-34 CA-IDMS Database Design



13.6 Non-SQL tuning options

must be manual. Otherwise, a child would be connected to the same parent occur-
rence in each relationship, as shown below.

MANAGES (AUTOMATIC)

REPORTS-TO (MANUAL)

Current of
4 run unit

@ Set currency at Smith

Current of
/ run unit

Stare 2/6/91

Current of

/" run unit

@ Set currency at Jones

Current of
run unit

Connect 2/6/91 to REPORTS-TO

If EMPLOYEE were AUTOMATIC for REPORTS-TO
Current of
¥ run unit

Set currency at Smith
Store 2/6/91

Guidelines: The manual connect and optional disconnect options permit greater
flexibility but require more programming effort. Additionally, they provide less
control over data integrity. You should therefore choose the mandatory automatic
(MA) membership option, unless there exists a special business requirement for
optiona disconnect and/or manual connect functions.

Representing membership options: Represent membership options for a
relationship on the data structure diagram by specifying the membership options to be
used: MA, MM, OA, or OM.

Chapter 13. Choosing Physical Tuning Options 13-35



13.6 Non-SQL tuning options

EMP-EXPERTISE

EMPLOYEE NPO MA EXPERTISE

I I 122 ICALC DES (SKILL CODE) U I IB ICLUSTERED
EMP-ID U EMP-EXPERTISE
EMP-DEMO-REGION EMP-DEMO-REGION

13.6.6.5 Removing foreign keys
Since al defined relationship in a database implemented with non-SQL are linked, you
have the option of removing foreign keys from the child entity. This:
®  Reduces storage requirements

»  Eliminates the need to update each child occurrence if the parent's key is changed

If you choose to retain the embedded foreign keys, you:
»  Have full update SQL access to the data
. May reduce the number of 1/Os required to retrieve foreign key values for non-
clustered entities (for example, to retrieve the department 1D of an employee)
13.6.7 Index tuning options
There are severa index tuning options available in the non-SQL environment.

13.6.7.1 Unlinked versus linked indexes

An unlinked index is an index in which there are no index pointers in the child enti-
ties.

Considerations

»  Unlinked indexes can be added and removed without restructuring the database,
provided the control length of the entity is not changed

® Building or rebuilding an unlinked index is faster because there are no index
pointers to be maintained

»  Additional CPU and 1/O's are required to locate an index entry for the current
entity occurrence. For example, changing the index key value or erasing an entity
occurrence both require the retrieval of the index entry.

This additional overhead occurs because the DBMS must search the index to find
the entry, whereas in a linked relationship there is a direct pointer to the SR8
occurrence containing the entry.

®  Linked indexes require additional storage space.

13-36 CA-IDMS Database Design



13.6 Non-SQL tuning options

13.6.7.2 Additional sort options for indexes

Standard and natural collating sequence: You can specify either of two col-
lating sequences for indexes:

» Standard collating sequence for indexes orders key fields based on their EBCDIC
collating sequence without regard to data type.

»  Natural collating sequence for indexes orders key fields based on their data type.
This means that negative numeric values will collate lower than positive values.

Duplicates option: As with sorted relationships, you can order index entries with
duplicate index key values as duplicates first, duplicates last, or in db-key sequence.

If there are many duplicates and the index is unlinked, order the duplicates by db-key.
This will reduce CPU in locating a specific index entry.

Representing additional index sort options: Represent additional sort options
for a relationship on the data structure diagram by specifying:

» NATURAL if the collating sequence is to be natural. Standard is the default.

» DF for duplicates first, DL for duplicates last, or DBKEY for duplicates by
db-key.

13.6.7.3 Nonsorted indexes

Nonsorted indexes are another way of linking all occurrences of an entity when the
database is sparsely populated with occurrences of that entity. A nonsorted index
requires less CPU and storage than a sorted index. A nonsorted index may, however,
be less effective than an index sorted by db-key value. If multiple entity occurrences
reside on a page, an index ordered by db-key will reduce the 1/Os necessary to retrieve
all occurrences.

Nonsorted orders: If the entity occurrences in the index are not to be sorted, you
can specify the logical placement of new index entries by indicating one of the fol-
lowing orders:

®n FIRST creates a LIFO (last in, first out) order. The new index entry is positioned
at the beginning of the index.

n LAST creates a FIFO (first in, first out) order. The new index entry is positioned
at the end of the index.

n NEXT creates asimple list. The new index entry is positioned immediately after
the entry for the current (most recently accessed) entity occurrence. The NEXT
order is recommended as a defaullt.

® PRIOR creates areverse list. The new index entry is positioned immediately
before the entry for the current entity occurrence.

Chapter 13. Choosing Physical Tuning Options 13-37



13.6 Non-SQL tuning options

13.6.7.4 Index membership options

The same membership options are available for indexes as for relationships (see
"Membership options' earlier in this chapter).

Guidelines: Use the mandatory-automatic (M A) membership option unless you
want only certain entity occurrences to be indexed. That is, if you want the program
to control which entity occurrences are to be indexed.

13.6.8 Non-SQL entity and index placement

To facilitate certain processing operations, you can instruct CA-IDMS/DB to store
entity occurrences in a specific portion of an area (non-SQL defined databases only).

By restricting entity occurrences to a specific set of pages, you can minimize overflow
conditions.

Displace a clustered entity from its owner: You can displace a clustered entity
from its owner. The DISPLACEMENT clause of the non-SQL schema ADD
RECORD statement allows you to store clustered entities away from their owner entity
in a database area. By specifying the number of pages to displace the clustered enti-
ties, you can separate different entity types within a cluster.

Specify a subarea in which to store an entity: You can specify a subarea
within an area in which a particular entity is to be stored. To separate CALC entities
from other entities in an area, CA-IDMS/DB allows you to assign al occurrences of a
particular entity type to a range of pages.

»> See the WITHIN AREA clauses of the non-SQL schema ADD RECORD statement
in CA-IDMS Database Administration for further information.

Specify a subarea in which to store an index: When specifying index place-
ment, you can specify a subarea within an area in which the owner of a system-owned
index is to be stored. If you decide to place an index in an area with other database
entities, you may want to assign the owner to a specific range of pages in the area.

»»> See the WITHIN AREA clauses of the non-SQL schema ADD SET statement in
CA-IDMS Database Administration for further information.

As you plan the use of storage resources, you need to keep in mind these options for
minimizing overflow conditions in the database.

13-38 CA-IDMS Database Design



13.7 Physical tuning options for Commonweather Corporation

13.7 Physical tuning options for Commonweather
Corporation

Assign entities to areas: You need to assign entities to database areas to provide
for efficient application runtime processing:

1 ORG-DEMO-REGION can hold all nonclustered entities. The DEPARTMENT,
OFFICE, JOB, SKILL, and INSURANCE PLAN entities can be stored in this area
of the database.

= EMP-DEMO-REGION holds all entities clustered around the EMPLOY EE
entity. The EMPLOYEE, EMPOSITION, EXPERTISE, and PROJECT entities
should be stored together in this area.

» INS-DEMO-REGION holds al entities clustered around the COVERAGE entity.
The COVERAGE, NON-HOSPITAL CLAIM, HOSPITAL CLAIM, and DENTAL
CLAIM entities can be stored in this area.

By placing Commonweather entities in separate areas, we enable programs to prepare
only the area or areas required for a particular operation rather than the entire data-
base. In addition, we reduce the likelihood of contention for heavily-used entities.

You may want to assign entities and indexes to separate areas.

Compress entities: The JOB and INSURANCE PLAN entities each contain a data
element that provides descriptive information about a particular entity occurrence (JOB
DESCRIPTION and PLAN DESCRIPTION). As such, these entities are good candi-
dates for compression.

Relationship options: All relationships are linked to provide most efficient access.
Since this is not a larg database, it is not necessary to eliminate relationships between
areas.

All clustered relationships are chained; al nonclustered relationships are indexed. This
reduces 1/0 when accessing nonclustered relationships and reduces CPU when
accessing clustered relationships.

The following relationships are sorted with the unique option to eliminate indexes used
only to enforce unique constraints:

Chapter 13. Choosing Physical Tuning Options 13-39



13.7 Physical tuning options for Commonweather Corporation

New sorted relationship Sort key Index eliminated

EMP-EMPOSITION START DATE JOB-NDX

EMP-EXPERTISE SKILL CODE EMP-NDX

NHC-PROC PROCEDURE NON-HOSP-NDX
NUMBER

DC-PROC PROCEDURE PROC-NDX
NUMBER

The following relationships are sorted to avoid sorting retrieval occurrences:

Sorted relationship Sort key

DEPT-EMPLOYEE EMP LAST NAME EMP FIRST NAME
OFFICE-EMPLOYEE EMP LAST NAME EMP FIRST NAME
SKILL-EXPERTISE SKILL LEVEL

All sorted relationships are order ascending except:

. SKILL-EXPERTISE, since usually employees holding a skill should be listed such
that those with the highest rating appear first

. EMP-EMPOSITION, since position START DATES are usually increasing in
value

13.7.1 Refined Commonweather Corporation database design (for
SQL implementation)

The refined data structure diagram for Commonweather Corporation (for SQL imple-
mentation) is shown below.

Having reviewed transactions, it is felt that all insurance information should be clus-
tered around an employee. This can be accomplished by removing the CALC key
from NON-HOSPITAL CLAIM, HOSPITAL CLAIM, and DENTAL CLAIM entities
and replacing each with a unique index on NONHOSP CLAIM ID, HOSPITAL
CLAIM ID, and DENTAL CLAIM ID respectively. In addition, the location mode of
each of the three entities must be changed to CLUSTERED through its relationship
with COVERAGE.

Due to the volume of datain the INS DEMO REGION, it is decided that all linked
relationships between this region and the EMP DEMO REGION be converted to
unlinked. The only relationship affected is EMP-COVERAGE. In order to convert it
to unlinked, you must either add an index or CALC key on EMP ID (the foreign key
of the relationship).

13-40 CA-IDMS Database Design



13.7 Physical tuning options for Commonweather Corporation

Since you want to cluster coverage entity occurrences by employee anyway, a CALC
key on EMP ID is chosen since it achieves the same results as clustering through the

EMP-COVERAGE relationship and eliminates the need for an additional index.

JOB-TITLE-NDX DEPARTMENT OFFICE SKILL-NAME-NDX
ASC (JOB TITLE} U HEIERE |82 Jcac ASC (SKILL NAME) U
= DEPT ID OFFICE CODE [U T
HEIET ORG-DEMO-REGION ORG-DEMO-REGION EaEE
W5 D o Oemons  [SCoor T
ORG DEMO-REGION ASC (EMP LAST NAME 7 w4 ASC (EMP LAST NAME ORG-DEMG-REGION
EMP FIRST NAME EMP FIRST NAME
#%B(-J%ngplc[))?mm ) SKILL-EXPERTISE
FK (SKILL CODE)
| DES (SKILL LEVEL)
EMPGSITION EP"("F(EEA'V'PP%?'T'ON L NAME.NDX
|38 JCLUSTERED] DES (START DATE) U ‘ ' ASC (EMP LAST NAME)
EMP-EMPGSITION | EMP FIRST NAME)
NP DEVOREGION EMPLOYEE w| EXPERTISE
[ [1es]enc EMP-EXPERTISE | | 16]cLUSTERED
EMP 1D u FK (EMP ID) EMP-EXPERTISE U
PROJECT I DES (SKILL CODE) U I
SAC EMP-DEMO-REGION EMP-DEMO-REGION
| [78] EMP-PROJECT |
PROJECT CODE | U FK (EMP ID)
EMP-DEMO-REGION | MANAGES-REPORTS-TO
FK (SUPR EMP D)
PRQOJECT-WORKER EMP-WORKER I
FK (PROJECT CODE) FK (EMP ID)
WORKER I EMP-COVERAGE INSURANGCE PLAN
[ T 2cfcrusteRed FK EMP 1) [C [7a6]cac
PROJECT-WORKER| I PLAN CODE [T
I COV-NDX INS-DEMO-REGICN
ASC (PLAIN CODE COVERAGE TYPE
, EMP 1D) U
COVERAGE-NHG COVERAGE-DC
FK (PLAN CODE) COVERAGT FK (PLAN GODE
EMF ID) I I 50 I CALC EMP D)

EMP-ID
INS-DEMQO-REGION

COVERAGE-HG
FK (PLAN GODE
EMP 1D}

HC-NDX
ASC (HOSPITAL
CLAIM ID) U
HOSPITAL CLAIM
[ T z10frustereq

COVERAGE-HC |
INS-DEMG-REGION

\ j
NON-HOSP PROCEDURE DENTAL PROCEDURE
| |85 [CLUSTERED | ]ss JeLustERED
NHCLAIM-PROC | DCLAIM-PROC |
INS-DEMO-REGION INS-DEMO-REGION

NHC-NDX
ASC (NON-HOSP CLAIM ID) U

¥

NON-HOSPITAL GLAIM
| [204 |cLUSTERED

COVERAGE-NHG |

INS-DEMO-REGION

NHCLAIM-PROC

FK (NON-HOSP CLAIM ID)

ASC (PROCEDURE NUMBER
NON-HOSP CLAIM ID) U

DC-NDX
ASC (DENTAL CLAIM ID) U

DENTAL CLAIM

| | 184 FLUSTEFIED
COVERAGE-DGC |
INS-DEMO-REGION
DCLAIM-PROC
FK (DENTAL CLAIM ID)

ASC (PROCEDURE NUMBER
DENTAL CLAIM ID) U

Chapter 13. Choosing Physical Tuning Options 13-41



13.7 Physical tuning options for Commonweather Corporation

13.7.2 Refined Commonweather Corporation database design (for
non-SQL implementation)

Additional non-SQL physical tuning options chosen for the Commonwesather Corpo-
ration database design are discussed below.

Create a multimember relationship: Since the COVERAGE, HOSPITAL
CLAIM, NON-HOSPITAL CLAIM, and DENTAL CLAIM entities are usually proc-
essed together, we can create a multimember relationship to relate these entities. Let's
call this relationship COVERAGE-CLAIMS.

Variable-length entities: Severa entities in the Commonweather database should
be converted to repeating elements in variable-length entities. The NON-HOSPITAL
PROCEDURE and DENTAL PROCEDURE entities should be made variably-repeating
elements because they each participate in only one relationship.

» The NON-HOSPITAL PROCEDURE entity can be converted to a repeating
element in the NON-HOSPITAL CLAIM entity.

» The DENTAL PROCEDURE entity can be converted to a repeating element in the
DENTAL CLAIM entity.

Add new entity: Because an employee must be managed by another existing
employee, the integrity of the MANAGES-REPORT TO relationship must be ensured.
In order to accomplish this in a non-SQL implementation, a new entity (STRUC-
TURE) and two relationships (REPORT-TO and MANAGES) must be created. Indi-
cate the appropriate relationship options to ensure that an employee is associated with
an existing employee. The MANAGES relationship is sorted to enforce unique con-
gtraints. (If it were not a sorted relationship, an index would have to be created to
enforce uniqueness.)

Remove unnecessary keys: Remove foreign keys if SQL access is not a priority.
If you choose to remove unnecessary keys, adjust the entity lengths accordingly.

Relationship options: Choose linkage and membership options for linked relation-
ships. Choose ordering option of each nonsorted relationship.

Duplicates options: Duplicates options for indexes and sorted relationships were
chosen based on application requirements.

The diagram below could be used to implement the database using a non-SQL defi-
nition.
The diagram shows:

® A multimember set

»  Variable-length entities

®» Removal of foreign keys as reflected in new entity lengths

13-42 CA-IDMS Database Design



13.7 Physical tuning options for Commonweather Corporation
JOB-TITLE-NDX DEPARTMENT OFFICE SKILL-NAME-NDX
ASC (JOB TITLE) U [ 53 Jcac | 62 | caLC ASC (SKILL NAME) U
DEPT ID [U OFFICE CODE [U
408 ORG-DEMO-REGION ORG-DEMO-REGION SKiLL
| ¢ [307] cac - - - - | 76 | CALC
JOB ID U DOEIE‘)T-EMPLOYEE %FE;EE*EMPLOYEE SKILL GODE I V]
10 OA
ORG-DEMO-REGION ASC (EMP LAST NAME A4 A4 ASC (EMP LAST NAME ORG-DEMG-REGION
EMP FIRST NAME) DL EMP FIRST NAME) DL
JOB-EMPOSITION SKILL-EXPERTISE
NPO OM NEXT 10 MA
| DES (SKILL LEVEL)
EMP-EMPGSITION
EMPOSITION RLOVA L NAME.NDX
| |31 JCLUSTERED] DES (START DATE) U ASC (EMP LAST NAME)
EMP-EMPOSITION | \ / EMP FIRST NAME)
NP DEMOREGION EMPLOYEE EXPERTISE
EMP-PRQJEGT [ Tieleac [ Ts [crusteren
NPO OA NEXT EMP ID |y EMP-EXPERTISE | U
PROJECT EMP-DEMO-REGION EMP-EXPERTISE EMP-DEMO-REGION
[c 8 ]oac BEg (“SAQLL CODE) U
PROJECT DE REPQORTS TO MANAGES
QJECT €0 [ u 10 OM NPO NEXT
EMP-DEMO-REGICN ASC (SUPR ASC (WRKR
PHOJECTWORKER EMP ID) DF, EMP ID) U
FNPO OM NEXT Lo viaRKER
NPO MA FIRST
WORKER STRUCTURE INSUBANGE PLAN
|12 JcLUSTERED | | & JcLusTERED [cTr128]cac
PROJECT WORKER] MANAGES PLAN CODE [T
EMP-DEMO-REGION EMP-DEMO-REGION INS-DEMQ-REGION
i EMP-COVERAGE
10 MA
COVERAGE ASC {PLAN CODE COVERAGE TYPE) U
| |46 cLUSTERED
EMP-COVERAGE |
INS-DEMO-BREGION
COVERAGE-CLAIMS
fj\ NP MA LAST
CLUSTERED

|

NON-HOSPITAL CLAIM
|v |1008|CLUSTEREQ

COVERAGE-CLAIMS |

INS-DEMO-REGION

HOSPITAL CLAIM

| v | 292 [CLUSTERED

COVERAGE—CLAIMSI

INS-DEMO-REGION

DENTAL CLAIM

| v] 930 |

COVERAGE-CLAIMS I

INS-DEMO-REGION

Since the design shown above will satisfy the performance requirements of the
Commonweather Corporation, this diagram will be used in later chapters of this
manual as the basis for performing sizing calculations and a final database design

review.

Chapter 13. Choosing Physical Tuning Options 13-43



13-44 CA-IDMS Database Design



Chapter 14. Minimizing Contention Among
Transactions

141 Overview . . . . .. 14-3
14.2 Sources of database contention . . . . . ... 14-4
1421 Areacontention . . . . ... ... 14-4
14.2.2 Entity occurrence contention . . . . . .. ... L 14-5
14.3 Minimizing contention . . . . .. ... 14-7
14.3.1 Minimizing contention for entitiesandareas . . . . . ... ... .. 14-7

Chapter 14. Minimizing Contention Among Transactions 14-1



14-2 CA-IDMS Database Design



14.1 Overview

14.1 Overview

Once you have refined the database model to optimize each individual database trans-
action, you should determine how the system will be affected by the concurrent exe-
cution of several transactions. You need to consider making changes to the physical
model to minimize the likelihood of system bottlenecks.

Bottlenecks are often caused by excessive contention for database resources. For
example, bottlenecks can occur when two or more programs (or terminal operators)
attempt to execute update transactions against the same entity occurrences at the same
time. Since the likelihood of contention increases with the number of database trans-
actions, you need to determine whether the physical database model can accommodate
the number of transactions executed at your corporation.

This chapter explains why database contention occurs and also shows you how to min-
imize contention.

Chapter 14. Minimizing Contention Among Transactions 14-3



14.2 Sources of database contention

14.2 Sources of database contention

Business transactions must contend for the following database resources:
® Aress

m  Entities

14.2.1 Area contention

Physical area locks: CA-IDMS/DB examines and sets physical area locks when-
ever an area is opened in an update mode. Physical area locks:

® Prevent concurrent updates by multiple IDMS runtime environments (multiple
local database transactions, multiple central versions, or a combination of both.)

®  Prevent update access to an area that requires rollback of database transactions.

Physical locks are handled differently depending on the mode of processing:

® L ocal mode — As each area is readied in any update mode, the lock is checked.
If the lock is set, access to the area is not alowed. If the lock is not set, the local
database transaction causes the lock to be set. In the event that the transaction
terminates abnormally (that is, without issuing a FINISH), the lock remains set.
Further update access or commit processing by subsequent database transactions is
prevented until the area is recovered.

® Central version — At system startup, the central version checks the locks in all
areas available to the system for update processing. If any lock is set, further
access to that area is disallowed (that is, the area is varied offline to the central
version). The central version proceeds without the use of that area.

If the lock is removed after system startup, the operator must vary the area status
from offline to online to make the area available to the centra version.

Logical area locks: Logical area locks are used by central version to control con-
current access to areas by database transactions running under central version. Logical
area locks are derived from the mode in which an areais readied. A logical lock on a
database area sometimes causes transactions to wait for database resources. When a
transaction cannot ready an area because of a protected or exclusive restriction placed
on that area by another transaction, the second transaction is placed in a wait state
until the first transaction is finished.

Concurrent area access: The following diagram shows the way in which ready
modes and ready options restrict concurrent use of an area by database transactions
executing under one central version.

Transaction A readies AREAL in protected update mode; transaction B readies the area
in shared retrieval mode; and transaction C attempts to ready the area in exclusive
update mode and is put into a wait state until both transactions A and B terminate.
Transactions D and E, attempting to ready the area, must wait until transaction C ter-
minates.

14-4 CA-IDMS Database Design



14.2 Sources of database contention

Time
| Transaction A | Transaction D |
IHeady area 1, protected updateI Ready area 1, protected update I
| Transaction B | |_ Transaction E |
IReady area 1, shared relrievall Ready area 1, shared retrievall

Transaction C |

Ready area 1, exclusive update |

Transaction executing

— — — — Transaction waiting

14.2.2 Entity occurrence contention

Record locks: CA-IDMS/DB sets record locks on entity occurrences accessed by
transactions operating under the central version. Record locks are never maintained
for transactions operating in local mode, since concurrent update is prevented by phys-
ical area locks.

Locks can be set implicitly by the central version or explicitly by the programmer, as
described below:

® Implicit record locks are maintained automatically by the central version for
every transaction running in shared update mode. They are optionally maintained
in shared retrieval and protected update mode, according to your specifications at
system generation.

» Explicit record locks, set by the programmer using navigational DML, are used
to maintain record locks that would otherwise be released following a change in
currency.

They are never maintained for areas whose status is transient retrieval or for data-
base transactions executing with an isolation level of transient retrieval.
Functions: Record locks perform four functions:

»  Protect against concurrent update of the same entity occurrence by two or more
transactions

»  Protect transactions from reading uncommitted updates made by another trans-
action

» Protect entity occurrences that are current of one transaction from being updated
by another transaction

»  Allow one transaction to selectively protect any entity from access or update by
another transaction

Chapter 14. Minimizing Contention Among Transactions 14-5



14.2 Sources of database contention

Increased contention: Record locks can sometimes increase contention among
programs that require access to database resources. In some instances, conditions that
result from the use of record locks may even cause abnormal termination of trans-
actions executing under the central version. The following conditions may occur:

®» Too many locks. If resource limits for locks are established and a transaction
tries to generate more locks than the limit, the system may terminate the trans-
action, depending on your specifications at system generation. If resource limits
for locks were not established, the system will continue processing, but processing
performance may be degraded.

»  Excessive wait time. If a transaction, while attempting to set a record lock, is
made to wait for another transaction to terminate (or to release a lock on an
entity), the first transaction waits only as long as the interval specified at system
generation before abending. When a transaction exceeds the internal wait time,
the system will terminate the transaction.

» Deadlock situation. If two transactions are in a deadlock, one of the transactions
is aborted. A deadlock occurs when two transactions wait on each other for
access to the same resource(s). For example, if both transaction A and transaction
B read the same entity occurrence, each acquires a shared record lock on the
occurrence. If transaction A then tries to update the entity occurrence, it will wait
until transaction B releases its lock. If transaction B tries to update the occur-
rence, it will wait on transaction A. Transactions A and B are in a deadlock
situation.

CA-IDMS/DB resolves this potential bottleneck by aborting and rolling back one
of the transactions. By default, the transaction chosen is the most recently begun
transaction with the lowest priority.

14-6 CA-IDMS Database Design



14.3 Minimizing contention

14.3 Minimizing contention

Guidelines: You can reduce the likelihood of bottlenecks resulting from area and
entity occurrence contention by making appropriate changes to the physical database
design. To make intelligent design decisions to reduce contention, you must first iden-
tify potential bottlenecks.

Chapter 10, “Identifying Application Performance Requirements’ on page 10-1
showed you how to determine;

®  The priority of each business transaction
»  How often each transaction will be executed

»  How often each entity will be accessed

By examining this information closely, you can identify potential bottlenecks in the
physical database. For example, if you know that two different database entities will
be accessed often, you can assign these entities to different areas to avoid area con-
tention. Additionally, you can schedule the execution of high-priority programs to
reduce the likelihood of contention with other programs.

14.3.1 Minimizing contention for entities and areas

Guidelines: Consider the following guidelines for minimizing contention for data-
base entities and areas:

. Minimize the use of one-of-a-kind (OOAK) entities.

To reduce contention for an OOAK entity used for maintaining a control number
(like the next order number in an order-entry system), you can manufacture the
control number. For example, instead of storing the number in the database, you
could determine the number dynamically from the date and time at which each
order is placed.

®  Avoid placing heavily-used entities in the same area. If severa heavily-used
entities are placed in the same database area, the area may become a source of
database contention. When heavily-used entities are stored in the same area, pro-
grams may have to contend for storage space, and internally-maintained control
structures such as those used for CALC processing.

To minimize area contention, you can assign each heavily-used entity to a separate
area in the database, as shown in the following diagram.

Chapter 14. Minimizing Contention Among Transactions 14-7



14.3 Minimizing contention

Program A
EMP-AREA
EMPLOYEE
Program B
INS-AREA | | "~
INSURANCE Retrieve
PLAN INSURANCE-PLAN

For further information on assigning entities to database areas, see Chapter 15,
“Determining the Size of the Database” on page 15-1.

» Place large indexes in separate areas. To avoid contention for space and
because indexes are typically heavily used, place them in separate areas.

®  Avoid long-running update transactions. Application programs that perform
many updates often set many record locks. To lessen the possibility of abnormal
termination as a result of setting too many locks or being involved in a deadlock,
the programmer can commit database changes to release locks at intervals
throughout the processing.

This technique should be used with caution, since the commit function also causes
a checkpoint to be written to the journal file. Following the unsuccessful exe-
cution of a DML function, a transaction is rolled back only to the point of the last
checkpoint. Thus the existence of a checkpoint resulting from a commit statement
would prohibit the system from performing a rollback to the beginning of the
transaction.

® Separate frequently-used and updated entities. If an entity creates excessive
contention among application programs, you can segment the entity into two or
more entities. For example, if the EMPLOY EE entity were a source of con-
tention, you could break the entity into EMPERS and EMPAY. EMPERS might
contain all personal information about each employee, while EMPAY could
contain professional information. The two entities could then be assigned to dif-
ferent database areas and use different indexes.

By segmenting employee data, you could eliminate contention between those pro-
grams that access employee personal information and those programs that only
require access to professional information, as shown in the following diagram.

14-8 CA-IDMS Database Design



14.3 Minimizing contention

Personnel application

EMPERS
(contains
personal

information

Payroll application

EMPAY
(contains
professional
information

Include several levels for each frequently-updated sorted index. While sorted
indexes with very few levels can be used to optimize performance in retrieval
applications, they sometimes cause contention between application programs that
perform update functions.

If a sorted index will be updated frequently, make sure that the index consists of
at least three levels. For further information on sizing a sorted index, see
Chapter 15, “Determining the Size of the Database” on page 15-1.

Schedule the execution of batch update jobs. In some situations, you should
consider scheduling programs that execute batches of updates to reduce contention.
By executing update programs one at a time, you can ensure that these programs
do not have to contend for the same database resources.

Ready areas in shared update mode. If an application program readies an area
in protected or exclusive mode, other programs may be placed in a wait state.
Therefore, whenever possible, programs updating a limited number of entities
before a commit should ready areas in shared update mode. The shared update
mode alows multiple transactions under the same central version to access the
area concurrently, thereby reducing area locking and contention.

Chapter 14. Minimizing Contention Among Transactions 14-9



14-10 CA-IDMS Database Design



Chapter 15. Determining the Size of the Database

151 Overview . . . ... 15-3
15.2 Generd database sizing considerations . . . . . ... .. 15-4
15.2.1 Sizing considerations for compressed and variable-length entities . . 154
1522 Space management . . . . ... L 15-5
15.2.3 Overflow conditions . . . . . .. ... ... .. ... ... ... ... 15-6
15231 CALCoveflow . ... ... ... .. . ... ... ... ... 15-6
15.2.3.2 Cluster overflow . . . ... ... ... .. ... ... .. ... . 15-7

15.3 Cadculating thesizeofanarea . . .. ... ... ... .. ... ...... 159
15.3.1 Step 1: Cdlculating the size of each cluster . . . . . . ... ... .. 15-9
15.3.2 Step 2: Determining the page size . . . . . . ... ... . ... ... 15-10
15.3.3 Step 3: Calculating the number of pagesinthearea . . . .. . . .. 15-13
15.4 Allocating space forindexes . . . ... ... ... .. ... ... ..... 15-16
1541 Index structure . . . . . . ... 15-16
15.4.2 Cadculating the size of theindex . . . .. ... ... ... ... ... 15-20
15.4.2.1 Calculating the size of an index sorted on a symbolic key . . . 15-21
15.4.2.2 Caculating the size of an index sorted on db-key . . .. .. .. 15-24
15.4.2.3 Caculating the size of an unsorted index . . . . .. ... ... 15-27

155 Placing areasinfiles . ... . ... ... 15-30
156 Sizingamegabase . . ... ... ... 15-33
15.6.1 Varying the database key format . . . . . ... ... ... .. ... .. 15-33
15.6.2 Assigning segmentsto page groups . . . . . ... 15-33

Chapter 15. Determining the Size of the Database 15-1



15-2 CA-IDMS Database Design



15.1 Overview

15.1 Overview

After you have decided how each entity in the database will be stored and accessed,
you can determine how much storage space to reserve for the database. To alow for
the most efficient processing, you need to plan the best use of available computer
storage resources.

As you determine the size of the database, you need to consider several factors,
including the hardware available at your corporation and the type of business applica-
tions that will be using the database.

After presenting a discussion of general database sizing considerations, this section
shows you how to:

»  Calculate the size of an area

® Allocate space for indexes

® Place areas in files

® Size a megabase

Chapter 15. Determining the Size of the Database 15-3



15.2 General database sizing considerations

15.2 General database sizing considerations

Before you determine the size of the database, you need to be familiar with the fol-
lowing topics:

®  Sizing considerations for variable-length entities
®  Space management for areas

» Overflow conditions

®  Assignment of entities to areas

= Assignment of aress to buffers

15.2.1 Sizing considerations for compressed and variable-length
entities

Internally, the DBMS treats the following types of entities as variable in length:

® Fixed-length compressed entities — entities with a fixed length that are com-
pressed through a compression routine; although the length of these entities is
fixed from the point of view of user programs, compression makes them internally
variable.

® Variable-length entities — Compressed or uncompressed entities with a length
that depends on a variably-occurring data element (that is, entities that contain an
OCCURS DEPENDING clause).

Fragmentation: The DBMS fragments a variable-length entity occurrence when it
is unable to store the entire entity on a single page. Fragmentation forces the system
to perform two or more 1/Os to retrieve a single variable-length entity. Fragmentation
should be kept to a minimum.

Root and fragment size: In anon-SQL environment, you can specify the fol-
lowing information in the schema:

® Minimum root -- The smallest amount of data to be stored on the entity's home
page (target page)

® Minimum fragment -- The smallest amount of data to be stored on any additional
page

For SQL compressed entities, the minimum root and fragment are assigned automat-
ically.

If a variable-length root or fragment exceeds 30 percent of the page size, space man-
agement problems may occur. To ensure efficient space management, you need to
tailor the size of the minimum root and fragment to the optimal page size for the
database area.

15-4 CA-IDMS Database Design



15.2 General database sizing considerations

Page reserve: When a database area contains variable-length entities, and a general
increase in the size of the entities is anticipated, you should define a page reserve in
the area definition. By specifying a page reserve, you can minimize fragmentation of
variable-length entities.

The page reserve is a specified number of bytes per page that can be used only for
expansion of variable-length entities or internally-maintained index records. For
further information on internally-maintained index records, see "Allocating space for
indexes' later in this chapter. The space will not be used for storing new entity occur-
rences. In general, page reserve should always be less than 30 percent of the page
size.

The page reserve is specified in the CREATE/ALTER AREA statement of the physical
database definition.

Note: A page reserve does not affect the physical structure of the database. You can,
therefore, vary the page reserve by using different DMCL modules, each with a
different page reserve.

»»> For more information on the physical database definition, see CA-IDMS Database
Administration.

15.2.2 Space management

To manage space in an area, the DBMS keeps track of available space on each page.
CA-IDMS/DB reserves selected pages called space management pages (SMPs) for
this purpose.

Space management pages: Thefirst page in each area is an SMP; depending on
the number and size of pages in the area, CA-IDMS/DB may reserve additional SMPs
throughout the area. When you determine the size of an area, you need to take into
consideration the number of SMPs to be maintained in the area

EMP-DEMO-REGION

I 1

10002 10003 15001 15002 15003

10001

Space Space
management management
page page

»»> For more information on space management, see CA-IDMS Database
Administration.

Chapter 15. Determining the Size of the Database 15-5



15.2 General database sizing considerations

15.2.3 Overflow conditions

Overflow conditions occur when entities must contend for storage space in the data-
base. In some instances, overflow can cause performance degradation. Therefore, you
need to understand the causes of overflow and know how to minimize it.

You should try to predict the effectiveness of segregating entities in the planning stage
and then fine tune the database in a test environment.
Note: You can use the database analysis utility (IDMSDBAN) to determine the total
number of overflows in a database.
Types of overflow: There are two types of overflow:
n CALC overflow

n Cluster overflow
Each of these types of overflow is discussed separately below.
15.2.3.1 CALC overflow

If occurrences of several entity types are randomized in one area or if an insufficient
number of pages exists for the number of occurrences of one CALC entity type,
CALC overflow conditions may occur.

Suppose an area contains two CALC entity types, A and C, and one clustered entity
type, B, which is clustered through the A-B relationship. One A and four B entities
fill a page, so that in several instances there is no room for a C entity randomizing to
the same page. CALC overflow may occur in this situation, as shown below.

In this instance, A and B entities have filled pages 1003 and 1006, and have caused
C2 and C4 to overflow to the next page. Two accesses are required to retrieve these
entities.

15-6 CA-IDMS Database Design



15.2 General database sizing considerations

A-B B
{(CLUSTERED
around A-B)

7

Qverfl

Page 1002 Page 1003 Page 1004 Page 1005 Page 1006 Page 1007

Some overflow should be expected. Be concerned if a high percentage (more than
25%) of CALC entities overflow.

Reducing overflow: To reduce overflow:
®»  Ensure non-static areas are no more than 75% full

® |nitially load CALC entity occurrences before clustered entity occurrences (This is
especialy effective in static databases.)

m  Separate entities into different areas

15.2.3.2 Cluster overflow

If the page size for a database area is not large enough to hold an entire cluster of
entity occurrences, cluster overflow conditions may occur. Cluster overflow occurs
when the DBMS cannot fit a new entity occurrence on the same page as other entity
occurrences in the cluster. Cluster overflow forces the DBMS to try to store the entity
occurrence on the next page in the area.

Suppose an area contains one entity, A, stored CALC, and one entity, B, which is
clustered through the A-B relationship. One A and four B occurrences fill a page. In
the instance shown in the diagram, one of the A-B clusters contains two B occur-
rences, one contains four occurrences, and one contains seven occurrences. Since
there isn't room for the seven occurrences on one page, the extra occurrences have had
to overflow to pages 1004 and 1005. To retrieve all occurrences in the cluster requires
three accesses.

Chapter 15. Determining the Size of the Database 15-7



15.2 General database sizing considerations

A A-B
(CALC)

%@@

—_—
Ovelflow

Page 1002 Page 1003 Page 1004 Page 1005 Page 1006 Page 1007

Reducing cluster overflow: You can reduce cluster overflow by:
® Increasing the page size for the area

® Assigning clustered entities to separate areas from their parent entities

15-8 CA-IDMS Database Design



15.3 Calculating the size of an area

15.3 Calculating the size of an area

To determine the amount of space necessary for a particular database area, you need to
perform the following procedures:

1
2.
3.

Cadlculate the size of each cluster.
Determine the page size.

Calculate the number of pages in the area.

Follow steps 1 through 3 as described below to determine the size of the areas in your
database.

15.3.1 Step 1: Calculating the size of each cluster

Through clustering, CA-IDMS/DB users can store related entities close together in the
database. Clustering allows a business application to access related entities quickly
and efficiently. To ensure optimal processing, you need to base your database sizing
calculations on the size of a cluster.

If you don't plan the use of storage resources effectively, the system may be unable to
fit an entire cluster on a single page. Overflow conditions may occur, causing the
system to perform two or more |I/Os to access each application cluster. For a detailed
discussion of overflow conditions, see "Overflow conditions" earlier in this section.

Procedure: You can use the following procedures to calculate the size of a cluster:

1
2.
3.

Identify the entity types in the cluster.
Determine the length (in bytes) of each entity type stored in the cluster.

If an entity participates in a relationship, add 4 bytes for each NEXT, PRIOR,
OWNER, or INDEX pointer.

Note: In an SQL implementation, linked clustered relationships always contain
NEXT, PRIOR, and OWNER pointers. Linked indexed relationships
always contain INDEX and OWNER pointers.

If an entity in a non-SQL implementation is indexed, add 4 bytes for the INDEX
pointer associated with each linked index.

If an entity is stored CALC, add eight bytes to allow for pointers in the CALC
(SR1) chain.

If an entity is variable length or compressed, add 8 bytes to allow for the variable-
length indicator and fragment pointer.

Add eight bytes for each entity to allow for storage of line indexes.

Sum the numbers calculated above to determine the total number of bytes for a
single occurrence of each entity type.

Determine the average number of occurrences of each entity type in a single
cluster.

Chapter 15. Determining the Size of the Database 15-9



15.3 Calculating the size of an area

10. Multiply the total bytes for each entity by the number of occurrences in the cluster
to calculate the amount of space needed for each entity type in the cluster.

11. Add the above space calculations to determine the total size for a single cluster.
Note: If any entity in the cluster is the parent of an indexed relationship, you need to
allow space for storage of the internal index entities.

Sample cluster size calculation: The following diagram shows how the size of a
cluster is determined.

In the EMP-DEMO-REGION area, 508 bytes will be required to store a complete
cluster of EMPLOYEE, EXPERTISE, EMPOSITION, and STRUCTURE entities.

o (7]
<o
< @a\ c;'t’) 2 &
§ fo>/ &) & D) &
S IT G < 2 N
EES/ RS LR S F o 9 )
& /S S/ &/ &/ &
3 &/ o G &/ & ™ ", SN
SOV EW-VINEVENY SN
Record t X Q) /@ 9/ & Y &
eeord ype RENY R WER YA YR WA
EMPLOYEE 128 | 44| 8| o 8 | 1sa| 1| 188
EXPERTISE 16| 12| 8| 0 8| 44| 3| 132
EMPOSITION 40| 12| 8 0 8| 68| 2| 136
STRUCTURE 20| 24| o 0 8| 52| 1| 52

Record bytes per cluster = 508 bytes

Note: |If one or more indexes are to be included in the cluster, refer to the index size
calculations later in this chapter.

The above calculations are for a non-SQL implementation. |f thisis an SQL
implementation, note that the data length and index pointer options may differ.

15.3.2 Step 2: Determining the page size

Page size: Whenever possible, you should select a page size that will hold two to
three clusters of data used by an application program. The maximum page size is
32764.

The following considerations apply to selecting a page size for a database area.

Physical device blocking: A database page is a fixed block. As a generd rule,
you should use pages that are an even fraction of the track size.

The following table lists the optimal page sizes by device type for five IBM disk
drives. Manufacturers of other brands of direct access storage devices (DASD) should
be able to provide similar information for their own equipment.

15-10 CA-IDMS Database Design



15.3 Calculating the size of an area

per 3330 3340 3350 3375 3380 3390
track

1 13028 8368 19068 32764 32764 32764
2 6444 4100 9440 17600 23476 27996
3 4252 2676 6232 11616 15476 18452
4 3156 1964 4628 8608 11476 13680
5 2496 1540 3664 6816 9076 10796
6 2056 1252 3020 5600 7476 8904
7 1744 1052 2564 4736 6356 7548
8 1508 896 2220 4096 5492 6516
9 1324 780 1952 3616 4820 5724
10 1180 684 1740 3200 4276 5064
11 1060 608 1564 2880 3860 4564
12 960 544 1416 2592 3476 4136
13 876 488 1296 2368 3188 3768
14 804 440 1180 2176 2932 3440
15 740 400 1096 2016 2676 3172

Note: The bytes per page for FBA devices must be a multiple of 512.

Note: On BS2000/0OSD operating systems, the size of the database page is always
rounded up to a multiple of 2k bytes (the standard PAM block size). Therefore, you
should specify a multiple of 2k bytes to make the best use of disk space.

Considerations:
Entity size

The size of a fixed-length entity or of a variable-length entity's minimum root or frag-
ment cannot exceed 30 percent of page size without causing additional overhead for
space management. Page size should always be at least three and one-third times
greater than the largest entity in the area. A higher ratio (up to ten times greater) is
preferable.

Note: With a variable-length entity, the length of the root and fragment must conform
to the consideration stated above. The entity itself (root plus al fragments)
can be larger than the page.

Page reserve

Chapter 15. Determining the Size of the Database 15-11



15.3 Calculating the size of an area

When you calculate the page size, you need to take into consideration the amount of
space necessary for the page reserve. A page reserve is used to alow space for:

» Future growth — At load time, you may want to reserve space in the database
for storage of new data entities or for splitting of SR8 entities in an index struc-
ture. In either case, you should specify the page reserve when the database is first
defined and then remove this page reserve after the database has been loaded.

= Expansion of variable-length entities — The page reserve for an area that con-
tains variable-length entities is specified when the database is defined and is never
removed.

Calculating the page reserve

To calculate the size of a page reserve, perform the following procedures:

1. For each variable-length entity in the area, find the difference in bytes between the
anticipated starting and expanded sizes.

2. Multiply the difference for each entity type by the anticipated number of occur-
rences of the entity.

3. Divide the total by the number of pages in the area.
The page reserve should never exceed 30 percent of the page size.
Buffer pool size
The size of a buffer pool depends on the amount of concurrent processing to be per-
formed against the database. To avoid excessive database 1/O operations, the buffer

pool should be able to hold at least five pages.

If sufficient main storage cannot be allocated for a five-page (or larger) buffer pool,
you should reduce the page size.

Suppose an installation uses type 3380 disk devices. In this environment, the main
storage required to create a buffer pool of six buffer pages is:

Page size Main storage required for six buffers
32,764 bytes 196,584 bytes

23,476 bytes 140,856 bytes

15,476 bytes 92,856 bytes

11,476 bytes 68,856 bytes

9,076 bytes 54,456 bytes

7,476 bytes 44,856 bytes

Note: Thereis additional overhead for each page in the buffer pool not included in
the above numbers.

15-12 CA-IDMS Database Design



15.3 Calculating the size of an area

Processing requirements

The number of clusters (or portions of clusters) to be stored on a page should be deter-
mined by application processing requirements:

» For typical random processing where direct access to data is essential, you
should use small page sizes (few clusters). A small page requires less time per
access and permits more concurrent processing on a channel. However, a small
page also reduces the data transfer rate, causes more 1/0Os, and uses more disk
space for a given quantity of data.

» For typical serial processing, large page sizes (several clusters) allow a high data
transfer rate and reduces the number of 1/0s. However, large pages also monopo-
lize the channel for longer periods of time.

Page header and footer
You need to alow 32 bytes on each page for the header and footer.
Large clusters

If the size of a cluster is excessively large (greater than 1/3 to 1/2 of atrack), define a
new database area and move a portion of the cluster to this area. Move one or more
child entities in the cluster to the new area. You can adjust the size of this new area
to accommodate a large cluster by increasing the page size or by adding more pages.

Storing clustersin a separate area

When you store child entities in a cluster in a separate area from their parent entities,
the position of the child entity occurrences is proportional to the position of the parent
entities in their area. Therefore the sizing considerations for both areas should be
Similar.

15.3.3 Step 3: Calculating the number of pages in the area

After you have identified the optimal page size for a database area, you can determine
the number of pages that should be allocated to that area. If significant growth is
expected early, plan for 50 percent initial capacity and allow for growth up to 70 to 80
percent. As a general rule, you should try to avoid exceeding 70 percent capacity.

Procedure: To calculate the total number of pages required for a database area,
perform the following procedures:

1. Calculate the number of bytes in each entity in the area: multiply the number of
bytes in each entity by the number of occurrences. Below is a form you can use
to compute the number of bytes required for each entity type. After you have
determined how much space is needed for each entity type, add the bytes for each
entity to determine the total number of bytes for the area

2. Calculate the number of base pages by dividing the total entity bytes by the page
size minus 32.

Chapter 15. Determining the Size of the Database 15-13



15.3 Calculating the size of an area

3. Divide the result by the desired space utilization (70 percent) to get the total
number of base pages. (Static files average 70 percent; dynamic files average 50
percent.) If there are any SR8 entities in the area, you may want to increase the
page reserve.

4. Subtract 32 from the page size and divide by 2 (bytes per SMP entry). Divide the
guotient into the number of base pages and round up to the next integer. The
result is the number of space management pages.

Note: For large databases, the CALC algorithm operates most effectively when
the number of pages in the area is a prime number.

5. Add the number of base pages and space management pages to determine the total
number of pages in the area.

6. To calculate the number of tracks needed, divide the number of pages in the area
by the number of pages per track on the type of disk device being used.

Sample area size calculation: The following form shows how the number of
pages in an area is determined.

The EMP-DEMO-REGION area needs 508,000 bytes to store all occurrences of the
EMPLOYEE, EXPERTISE, EMPOSITION, and STRUCTURE entities. Calculations
determine that 173 database pages of 4276 bytes need to be allocated to accommodate

these entities.
Qo @
o
3 &g/ &
& o/ & & &
9 = £/ Q X 7
&/ L/ & A o o 4} )
5 /S o:@ So/8a /) 2/ 8 g
T [LE/es [/ CE/SE /) s /o
Record type & /P < Co/ed /) F < X
SVASN VAWK VAV K WA
EMPLOYEE 128 | 44 | 8 0 8 |188| 1 | 188
EXPERTISE 16| 12 8 0 8 44| 3 |[132
EMPOSITION 40| 12 | 8 0 8 68| 2 | 136
STRUCTURE 20| 24 | 0 0 8 52| 1 52

1. Entity bytes per area = 508 k bytes

2. Calculate the number of base pages by dividing the total bytes by page size minus
32

4276 - 32 = 4244
508,000 / 4244 = 120 pages (rounded up)

3. Divide by desired space utilization (70%): 172 (rounded up)

4. Subtract 32 from page size and divide by two. Divide the quotient into the
number of base pages and round up to the next integer. The result is the number
of space management pages.

172 / 2122 = .08

15-14 CA-IDMS Database Design



15.3 Calculating the size of an area

Rounding up to the next whole page, only one SMP will be needed.

5. Add the number of base pages and space management pages to determine the
number of pagesin the areaz 173

6. Divide the number of pages in the area by the number of pages per track on the
type of disk device being used. The result is the number of tracks needed:

173 / 10 = 17.3 tracks

Chapter 15. Determining the Size of the Database 15-15



15.4 Allocating space for indexes

15.4 Allocating space for indexes

When a database area contains an index, you must provide space in the area for
storage of the index. To determine the amount of space needed, you perform some
simple calculations. Before you allocate space for an index, you need to consider both
the volume of data entities to be indexed and the type of internal structures that
CA-IDMS/DB will generate to allow access to these entities.

Following a discussion of the structure of an index, procedures for calculating the size
of an index are presented below.

15.4.1 Index structure

Indexes are built and maintained by the DBMS for:

m  System indexes — These are standalone index structures providing aternate
access to entity occurrences. They are defined using the OWNER IS SYSTEM
clause of the non-SQL ADD SET statement or the CREATE INDEX statement in
SQL.

The root (or top entity) of a system index is an SR7 entity. Thisis an internal
record type with a location mode of CALC. For non-SQL defined indexes, the
CALC key is the name of the index. For SQL-defined indexes, it is an internally
generated name.

® Indexed relationships — These are index structures associated with each occur-
rence of a parent entity in an indexed relationship and are used to point to the
associated child entity occurrences.

They are defined using the MODE IS INDEX clause of the non-SQL ADD SET
statement where the set is not defined as SY STEM-OWNED or the LINKED
INDEX clause of an SQL CREATE CONSTRAINT statement. The root of an
indexed relationship is an occurrence of the parent entity.

Structure of an index: The structure of an index consists of internally-maintained
records called SR8s. Each SR8 is chained (by next, prior, and owner pointers) to the
parent entity occurrence (or SR7 in the case of a system index) and to each other. An
index is therefore structured as a chained relationship between the parent entity (or
SR7) and the SR8s.

An SR8 contains from 3 to 8,180 index entries and a cushion (that is, a field that is
the length of the largest possible index entry). The content of an index entry depends
on the index characteristics:

» For sorted indexes, SR8s are arranged in levels to facilitate searching. Each
index entry contains the db-key of an indexed entity occurrence or the db-key of
another SR8. Additionally, for indexes sorted on a symbolic key, each index entry
also contains a symbolic key. A symbolic key is a key constructed of one or
more data elements in the order specified in the schema (up to 256 bytes in
length).

15-16 CA-IDMS Database Design



15.4 Allocating space for indexes

® For unsorted indexes, SR8s are arranged in a single level. Each index entry is
the db-key for an entity occurrence.

An unsorted index: The following diagram shows the structure for a simple
unsorted indexed relationship. In this example, there is a single SR8 chained to the
indexed set's parent. The SR8 contains three entries. Each entry contains an index
pointer that points to a child entity occurrence. Each child occurrence contains an
index pointer that points to that SR8 and an owner pointer that points back to the set's
parent. (The owner pointer is optional.)

Parent - -
record 70[\};?;'2 70F]r?03r.2 Parent record’s data
(70133:1)
SR8 .

70133:1 |70133:1 |70133:1 . ) A
(70133:2) Next Prior Owner 30000:3 | 50000:5 [40000:4
Child . .

70133:2 |70133:1 i '
record A Index Owner Child record's data
(30000:3)
Child
record B 70133:2 170133:2 Child record's data

Index | Owner

(50000:5)
Child 70133:2 |70133:2
record C index | Qwner Child record’s data
(40000:4)

Chapter 15. Determining the Size of the Database 15-17



15.4 Al

locating space for indexes

Structure of a three-level index: The following diagram shows the structure for a
sorted index arranged in three levels. In this example, each SR8 has a maximum of
three entries. Each entry consists of a symbolic key value and a db-key. The bold
entries show how the LONG entity is located during an index search. In the top and
intermediate levels, the db-key in each entry points to another SR8. (For simplicity,
prior and owner pointers are not included in this figure)

—_—

Top level I

Intermediate | |

level

Bottom
level

Next pointer Paren
— or SR
Index pointer (down)

- Index pointer {up)

- =— — | SN8B SAsC

FERRO
INNIS
WEST

CARR

N

©
=
&

GREY
HALL
INNIS
UPTON
WEST

15-18 CA-IDMS Database Design



15.4 Allocating space for indexes

Entries in a 3-level index:
symbolic keys for a three-level sorted index. Each entry consists of a symbolic key
and a pointer (db-key). The bold entries show how the LONG entity is located in the
database. The pointers in the top and intermediate levels point to SR8s at the next
lowest level. Only the bottom-level entry points to the indexed entity. (For simplicity,
prior and owner pointers are not included in this figure; in addition, there are two
pointers for the symbolic key for BENN, since there are two employees with that

The following diagram shows the index pointers and

name.)
Symbolic Db-key
key
Top-level SR8s 90002:3 Innis 90004:10
West 90004 :57
Intermediate- 90004:10 Carr 90015:13
level SR8s Ferro 90016:40
Innis 90030:6
00004:57 Nelson 90021:3
Stuart 90018:53
West 90030:12
Bottom- level 90015:13 Benn 721009:147 723006:105
SR8s Carr 721007:3
90016:40 Davis 720617:201
East 721592:63
Ferro 722310:16
00030:6 Grey 720016:31
Hall 727160:52
Innis 725921:74
00021:3 James 726412:4
Long 724263:12
Nelson 727160:90
90018:53 Stuart 720039:37
Upton 720715:52
90030:12 West 725129:2

Number of levels in an index:

The number of levels in an index directly affects
database performance. The number of levels determines:

® The number of 1/0srequired to access the indexed entities. An index that has
few levels (four or fewer) typically incurs a minimum number of 1/0s to access
the indexed entities.

»  How much contention will occur for access to the SR8 records. An index that
has several levels typically reduces contention among application programs that
require access to SR8s.

An index is considered efficient if there is little contention for the SR8s and few 1/0Os
are required to access the indexed entities. To develop an efficient index, you should

Chapter 15. Determining the Size of the Database 15-19



15.4 Allocating space for indexes

usualy plan an index that has three levels of SR8s. An index that has more than eight
or ten levelsis likely to degrade processing performance by causing the system to
access many SR8s when searching for a particular indexed entity occurrence. A
system index that consists of fewer than three levels may incur contention if frequently
updated. Indexed relationships should usually have fewer than three levels since con-
tention is less likely because there are multiple index structures (one for each relation-
ship occurrence).

Since the structure of an index depends on several dynamic factors, it is often difficult
to make a precise calculation of the number of levels that the DBMS will create.
CA-IDMS/DB therefore provides schema syntax that can be used to influence the
number of levels that will be generated for a particular index.

The number of levels generated by CA-IDMS/DB for a sorted index depends on the
number of index entries in each SR8. You can specify the maximum number of
entries that can be contained in an SR8 by using the INDEX BLOCK CONTAINS
clause of the index definition in the schema.

You can improve the efficiency of an index by performing one of the following proce-
dures:

»  Decrease the number of levels in the index by increasing the number of entries
in each SR8. This action can enhance efficiency by decreasing the number of
SR8s that the DBM S must access when searching for a particular entry.

® |ncrease the number of levelsin the index by decreasing the number of entries
in each SR8. This action can enhance efficiency by reducing the likelihood of
contention for SR8s.

» For further information on the structure of an index, see CA-IDMS Database
Administration.

15.4.2 Calculating the size of the index
To account for the different types of index structures, you use a different set of for-
mulas to calculate the size of each of the following types of indexes:
®  Indexes sorted on a symbolic key
®  Indexes sorted on the database key

»  Unsorted indexes
Formulas for calculating the size of indexes are outlined in the following tables.

»» For information about sizing an index automatically, see Area statements in "Phys-
ical Database DDL Statements' of Volume 1 of CA-IDMS Database Administration.

15-20 CA-IDMS Database Design



15.4 Allocating space for indexes

Considerations: Before you calculate the size of your indexes, you should be
aware of the following index sizing considerations:

»  The method of loading the index deter mines how the index size should be
calculated. The formulas presented in the tables below should be used only to
calculate space requirements for indexes that are loaded in sequential order.

® Index sizing calculations should allow ample space for future growth. You
have several options for reserving space for expansion of an index:

Make a generous estimate of the number of occurrences to be indexed; use
this inflated number as the basis for performing your index sizing calcu-
lations.

Make a generous estimate of the number of pages required for the areain
which the index will be stored; the formulas presented below can be used to
calculate the minimum number of pages required for an area in which an
index will be stored.

Specify a page reserve at load time; after the index has been loaded, remove
the page reserve and increase the number of entries in each SR8.

Indicate how far away from the parent or SR7 the bottom-level SR8s are to
be stored. For an indexed relationship or a system-owned index, you can use
the DISPLACEMENT clause of the non-SQL schema ADD SET statement or
the SQL schema CREATE INDEX statement to cluster bottom-level SR8s
away from their parent in a database area. By specifying the number of pages
to displace the bottom-level SR8s, you can reserve space in the area for
storage of intermediate SR8s.

15.4.2.1 Calculating the size of an index sorted on a symbolic key

Calculation Formula/instructions

Number of The requirements of your database will determine these values. You may want to use an
indexed entity inflated number to allow for future growth.

occurrences

and key length

Number of In most situations, you should design indexes with three levels. However, your index may
index levels consist of from one to four index levels. Indexes with few entries or a short key may be

built with only two levels; indexes with many entries or very long keys may require four
levels. Indexed relationships or indexes with extremely few entries may require only one

Chapter 15. Determining the Size of the Database 15-21



15.4 Allocating space for indexes

Calculation Formula/instructions
Number of For an n-level index:
entries per SR8

#SR8-entries =
nth-root-of-#indexed-entity-occurrences

For example, to build a 3-level index:

#SR8-entries =
cube-root-of-#indexed-entity-occurrences

The results of this calculation should be rounded up to the next higher integer.

Size of SR8 Determine SR8 size (including line index space) by using the following formula:
entities

SR8-size =

40 + (#SR8-entries + 1) * (key-length + 8)

Key-length equals the sum of the lengths of all data elements in the index key.

Number of Determine the number of SR8s required for your index by level:

SR8s
#Level-0-SR8s =

(#indexed-entity-occurrences + #SR8-entries - 1)

#SR8-entries

#Level-1-SR8s =
(#1evel-0-SR8s + #SR8-entries - 1)

#SR8-entries

#Level-2-SR8s =
(#1evel-1-SR8s + #SR8-entries - 1)

#SR8-entries

One of the above calculations will be required for each level in your index; note that the
quotient should be truncated, not rounded. Calculate the number of SR8s at each level until
the quotient equals 1. The total number of SR8s required for your index is egual to the sum
of al the counts computed above.

Number of Calculate the total number of bytes of space you will need to accommodate the index:

bytes required
Total-#bytes-required = #SR8s * SR8-size

Note: Level-0 refers to the bottom level of the index structure.

15-22 CA-IDMS Database Design



15.4 Allocating space for indexes

Calculation

Formula/instructions

Page size for
the index area

Plan to store at least three SR8s on a page; use a page reserve of up to 29% of each page.
The page reserve factor actually increases the size of your database page so that additional
SR8s can be accommodated without generating overflow. Use the following formulas to esti-
mate page size.

Page-size = (#SR8s-per-page) * (SR8-size)

Total-page-size = page-size + page-reserve
+ page-header-footer-length

The header-footer length is 32 bytes for an area. Compare the resulting page size with the
table under "Step 2: Determining the page size" and select the next larger page size that's
compatible with your DASD device:

n |f the page size determined in this way is too large, the number of index levels will have
to be increased until a satisfactory compromise between page size and number of index
levels is reached.

n |f the page size determined is much smaller than 4K, use a 4K page size instead; this
allows more than three SR8s to be stored on each page.

Number of For improved efficiency, sorted indexes should make use of SR8 displacement pages to dis-
SR8 displace- place bottom-level (level-0) SR8s from the top-level and intermediate-level SR8s. To deter-
ment pages mine the number of displacement pages needed, perform these calculations:

#Non-displaced-SR8s = total-#SR8s - #level-0-SR8s

#SR8-displacement-pages =

(#non-displaced-SR8s + #SR8s-per-page - 1)

------------------------------------------ + 1
#SR8s-per-page
Note: The quotient should be truncated, not rounded.

Number of After calculating the displacement pages, determine the total number of pages needed for the
pages needed index:

for the index

Total-#Pages-needed = #SR8-displacement-pages +
(#1evel-0-SR8s + #SR8s-per-page - 1)

#SR8s-per-page

Note: The quotient should be truncated, not rounded.

Chapter 15. Determining the Size of the Database 15-23



15.4 Allocating space for indexes

15.4.2.2 Calculating the size of an index sorted on db-key

Calculation

Formula/instructions

Number of index
entity occurrences

The requirements of your database will determine this value. You may want to use an
inflated number to allow space for future growth.

Number of index
levels

In most situations, you should design indexes with three levels. However, your index
may consist of from one to four index levels. Indexes with few entries may be built
with only two levels; indexes with many entries may require four levels. Indexed
relationships or indexes with extremely few entries may require only one level.

Number of entries
per SR8

For an n-level index:

#SR8-entries =
nth-root-of-#indexed-entity-occurrences

For example, to build a 3-level index:

#SR8-entries =
cube-root-of-#indexed-entity-occurrences

The results of this calculation should be rounded up to the next higher integer.

Size of SR8s

Determine SR8 size (including line index space) by using the following formulas:

Level-0-SR8-size =
40 + (#SR8-entries + 1) * 4

Non-Tevel-0-SR8-size =
40 + (#SR8-entries + 1) = 8

Round the value up to the next higher number divisible by 4. The level-0 SR8 length
is nearly half that of the non-level-0 SR8. This means that a page for an index sorted
on db-key can hold nearly twice as many bottom-level SR8s as higher-level SR8s.

15-24 CA-IDMS Database Design



15.4 Allocating space for indexes

Calculation

Formula/instructions

Number of SR8s

Determine the number of SR8s required for your index by level:

#Level-0-SR8s =
(#indexed-entity-occurrences + #SR8-entries - 1)

#SR8-entries

#Level-1-SR8s =
(#1evel-0-SR8s + #SR8-entries - 1)

#SR8-entries

#Level-2-SR8s =
(#1evel-1-SR8s + #SR8-entries - 1)

#SR8-entries

The quotient should be truncated, not rounded. Continue calculating the number of
SR8s at each level until the quotient equals 1. One of the above calculations will be
required for each level in your index. The total number of SR8s required for your
index is equal to the sum of al counts computed above.

Number of bytes
required

Calculate the total number of bytes of space you will need to accommodate the index:

#Bytes-required-for-Tevel-0-SR8s =
#1evel-0-SR8s * Level-0-SR8-size

#Bytes-required-for-non-level-0-SR8s =
#non-Tevel-0-SR8s * non-level-0-SR8-size

Total-#bytes-required =
level-0-bytes + non-level-0-bytes

Chapter 15. Determining the Size of the Database 15-25



15.4 Allocating space for indexes

Calculation

Formula/instructions

Page size for the
index area

Plan to store at least three SR8s on a page; use a page reserve of up to 29 percent of
the page size. The page reserve factor actually increases the size of your database page
so that additional SR8s can be accommodated without generating overflow. Use the
following formulas to estimate page size:

Page size =
(#SR8s-per-page) * (non-level-0-SR8-size)

Total-page-size = page-size + page-reserve
+ page-header-footer-length

The header-footer length is 32 bytes for a standard area. Compare the resulting page
size with the result from the previous table and select the next larger page size that's
compatible with your DASD device:

» [f the page size determined in this way is too large, the number of index levels will
have to be increased until a satisfactory compromise between page size and number
of index levels is reached.

m |f the page size determined is much smaller than 4K, use a 4K page size instead;
this allows more than three SR8s to be stored on each page.

Number of SR8 dis-
placement pages
needed

For improved efficiency, sorted indexes should make use of SR8 displacement pages to
displace bottom-level (level-0) SR8s from the top-level and intermediate-level SR8s.
To determine the number of displacement pages needed, perform these calculations:

#Non-displaced-SR8s =
total-#SR8s - #level-0-SR8s

#SR8-displacement-pages =
(#non-displaced-SR8s + #SR8s-per-page - 1)

#SR8s-per-page

Note that the quotient is truncated, not rounded.

Number of pages
needed for the index

After calculating the displacement pages, determine the total number of pages needed
for the index:

Total-#Pages-needed =
#SR8-displacement-pages +
(#1evel1-0-SR8s + #level-0-SR8s-per-page - 1)

#1evel-0-SR8s-per-page

Note that the quotient is truncated, not rounded.

15-26 CA-IDMS Database Design



15.4 Allocating space for indexes

15.4.2.3 Calculating the size of an unsorted index

Calculation

Formula/instructions

Number of indexed
entity occurrences

The requirements of your database will determine this value. You may want to use an
inflated number to allow space for future growth.

Number of index
levels

Unsorted indexes consist of only one level (level-0).

Number of entries
per SR8

The number of SR8s should be three or more and less than the number of entity occur-
rences being indexed. Work out the formulas in the following steps with a number of
your choice; bear in mind that you need to derive an SR8 that is less than 30 percent of
the page size for the area. Recalculate the formulas as necessary until you reach the
desired result.

Size of SR8s

Determine SR8 size (including line index space) by using the following formula

SR8-size = 40 + (#SR8-entries + 1) = 4

Round the value up to the next higher number divisible by 4.

Number of SR8s

Determine the number of SR8s that will be required for your index:

Total-#SR8s =
(#indexed-entity-occurrences + #SR8-entries - 1)

#SR8-entries

Note that the quotient is truncated, not rounded.

Number of bytes
required

Calculate the total number of bytes of space you will need to accommodate the index:

#Bytes-required-for-SR8s = #SR8s * SR8-size

Chapter 15. Determining the Size of the Database 15-27



15.4 Allocating space for indexes

Calculation

Formula/instructions

Page size for the
index area

Plan to store at least three SR8s on a page; use a page reserve of up to 29 percent of
the page size. The page reserve factor actually increases the size of your database page
so that additional SR8s can be accommodated without generating overflow. Use the
following formulas to estimate page size:

Page-size = (#SR8s-per-page) * (SR8-size)

Total-page-size =
page-size + page-reserve
+ page-header-footer-length

The header-footer length is 32 bytes for an area. Compare the resulting page size with
the result from the first table and select the next larger page size that's compatible with
your DASD device:

» [f the page size determined in this way is too large, the number of index levels will
have to be increased until a satisfactory compromise between page size and number
of index levels is reached.

m |f the page size determined is much smaller than 4K, use a 4K page size instead,;
this allows more than three SR8s to be stored on each page.

Number of pages
needed for the index

Determine the total number of pages needed for the index:

Total-#pages-needed =
(#SR8s + #SR8s-per-page - 1)

#SR8s-per-page

Note that the quotient should be truncated, not rounded.

Sample index size calculation: The following diagram shows how space is allo-
cated for storage of an index.

The SKILL-NAME index requires 18 database pages.

For a detailed explanation of the formula used to calculate space requirements for this
index, see the previous table.

15-28 CA-IDMS Database Design



15.4 Allocating space for indexes

# OF SKILL OCCURRENCES 1680
KEY LENGTH 12
# OF INDEX LEVELS 3
# OF ENTRIES PER SR8 12
SIZE OF SR8 300
# OF SR8s 153
# OF BYTES REQUIRED FOR INDEX 45900
# OF SR8 DISPLACEMENT PAGES 3

TOTAL # OF PAGES IN SKILL-NAME-REGION AREA 18

# SR8 ENTRIES = Cube-root-of-#skill-occurrences = 12 (rounded up)

SR8 SIZE = 40 + (13 * 20) = 300 bytes

LVL-0 = (1680 + 11) / 12 = 140 (truncated)
LVL-1 = (140 + 11) / 12 = 12 (truncated)
LVL-2 = (12 + 11) / 12 = 1 (truncated)

(In this 3-level index, there are 140 displaced SR8s and 13 non-displaced SR8s; the
total number of SR8s is 153.)

# OF BYTES REQUIRED FOR INDEX = 153 = 300 = 45900
SPACE REQUIRED FOR STORING 3 SR8s = 3 * 300

PAGE-SIZE (INCLUDING PAGE RESERVE) = 900/.76 + 32 = 1318

(1318 hytes for page size is very small; therefore a 4K page size might be used
instead. If a 4K page size is selected, the DBMS will be able to store approximately
10 SR8s on a page.)

# OF SR8 DISPLACEMENT PAGES

(15+10-1) /106+1=3

TOTAL # OF PAGES IN AREA (140 + 10 - 1) / 10 + 3 =18

Chapter 15. Determining the Size of the Database 15-29



15.5 Placing areas in files

15.5 Placing areas in files

Guidelines: You can assign al areas in a database to a single file or you can dis-
tribute areas over severa files. The following table provides some guidelines for
assigning areas to files.

The relationship between areas and files can be defined as one-to-one, one-to-many,
many-to-one, or many-to-many. Each arrangement has its advantages and disadvan-
tages.

Relationship Advantages Disadvantages
One area to one n Allows ease of n |f used with VSAM, this arrangement may require exces-
file maintenance sive VSAM memory requirements (GETVIS)

Facilitates recovery

Provides maximum
flexibility in
assigning areas to
buffers

One area to u
many files

Minimizes
head/channel con-
tention by
spreading data over
multiple packs

Optimizes proc-

essing of large
and/or highly active

areas
Many areas to = Recommended for »  Restricts buffer allocations
one file small, stable areas

that are not used ®m  Complicates DBA maintenance

often

Many areas to
many files

m Severely restricts buffer allocations

. Complicates DBA maintenance

= Minimizes flexibility in data set placement on disk
m  Complicates recovery procedures

®  Should be avoided

Processing considerations: When assigning areas to files, you should keep in
mind the following processing considerations.

15-30 CA-IDMS Database Design



15.5 Placing areas in files

Input/output seek time: Follow these guidelines for minimizing seek time:

» |f you need to keep all (or several) areas online, you can reduce seek time by
mapping each area into files allocated across all the disk volumes.

» Place the most frequently accessed data set (database file) near the middle cylinder
on a disk volume. The access arm begins a seek operation from the position
where it completed the last operation; therefore, the distance the arm must travel
will, on the average, be less to reach a cylinder in the middle of the disk surface.

»  Place the smallest data sets that are accessed equally often near the center of the
disk volume.

= When concurrently active data sets must be accessed by the same access mech-
anism, place them adjacent to one another.

n |f possible, place small, concurrently active data sets on the same cylinder.

For more specific guidelines, consult your hardware vendor publications for the hard-
ware devices used at your installation.

Access-arm contention: To reduce contention for use of the access arm, you can
place concurrently active data sets under different access mechanisms.

Minimizing seek time: If you need to keep all areas online, you can reduce seek
time by mapping the areas into files alocated across al the disk volumes. For
example, you can allocate nine files, three on each volume, and map each area across
all three volumes. This reduces the number of cylinders across which the disk heads
must move to process any one application, as shown below.

The diagram below shows how entities used for one application can be distributed over
all volumes to limit head movement.

Sizing considerations: Asyou assign areas to files, you need to keep in mind the
following sizing considerations:

»  For each page, there must be only one corresponding block of the same size.

m  Pages in one area must be numbered as one continuous range of integers (you
select the starting number); blocks in one file must be numbered as one contin-
uous range of integers, starting with the number one.

®  Page ranges must not overlap.

Chapter 15. Determining the Size of the Database 15-31



15.5 Placing areas in files

®  Page size can vary from area to area but not within an area; block size can vary
from file to file but not within afile. Areas with different page sizes cannot be
mapped into one file, and one area cannot be mapped across files with different
block sizes.

15-32 CA-IDMS Database Design



15.6 Sizing a megabase

15.6 Sizing a megabase

To alow for processing of very large databases, CA-IDMS/DB permits you to:
® Vary the format of the database key
= Assign segments to page groups

Each of these sizing options is discussed below.

15.6.1 Varying the database key format

A database key is the concatenation of an entity's page number and its line index, for a
total of four bytes. The format for a database key is variable. The page number can
make up 20 to 30 bits of the database key; the line index can make up 2 to 12 bits.

Y ou determine the database key format by specifying the MAXIMUM RECORDS
PER PAGE clause of the CREATE SEGMENT statement.

Since database key format is variable, you can structure the database to allow for
either:

®  More pages with fewer entities per page — The number of pages in an area can
be from 2 to 1,073,741,824.

» More entities per page with fewer pages — Each page in a database can have
from 2 to 2,727 entities.

To accommodate a very large database, you need to make sure that the highest page in
an area can be expressed in the database key format. You also need to ensure that the
line index is large enough to identify the highest entity occurrence on a specific page.

Note: The number specified in the MAXIMUM RECORDS PER PAGE clause indi-
cates the maximum number of entity occurrences that the run-time system will
place on a single page. The actual number of occurrences on a given page
depends on the page size and the size of individual entity occurrences placed
on the page.

15.6.2 Assigning segments to page groups

By assigning segments to page groups, you can maintain, under a single central
version, multiple databases that total more than a billion pages. A page group
uniquely identifies a collection of page ranges. You can specify a numeric identifier
in the range 0 through 32,767 as a page group.

»»> For more information on varying the db-key and page groups, see CA-IDMS Data-
base Administration.

Chapter 15. Determining the Size of the Database 15-33



15.6 Sizing a megabase

Considerations: Although segments can be assigned different page groups and
database key formats, the following restrictions apply:

By default, a single database transaction can access data in only one page group
for a non-SQL defined database. Therefore, data to be accessed together must be
defined within the same page group.

The single page group restriction for a transaction does not apply to SQL defined
databases or to non-SQL defined databases accessed through a DBNAME with
Mixed Page Group Binds Allowed. However, sets, indexes, and referential con-
straints (both linked and unlinked) may not cross page group boundaries. Also,
owner and member records for a set must be in the same page group and have the
same number of records per page. All records of a record type to be accessed in a
single transaction must reside in the same segment. While you may horizontally
segment a database, for example by placing customer information in three seg-
ments (CUSTEAST, CUSTWEST, CUSTCENT), you may access only one of
these segments at a time from within a transaction.

All segments within a page group must have the same database key format.
However, when using a DBNAME with Mixed Page Group Binds Allowed, a
single transaction may access data from multiple page groups each having a dif-
ferent database key format.

»  All segments of a dictionary must be in the same page group.

»> For more information on the use of Mixed Page Group Binds Allowed, see
CA-IDMS Database Administration.

15-34 CA-IDMS Database Design



Chapter 16. Implementing Your Design

16.1 OVEIVIEW . . . . o 16-3
16.2 Reviewingthedesign . ... ... . ... .. ... ... ... ... 16-4
16.2.1 Step 1: Review the logical database model . . . . . . . . ... ... 16-4
16.2.2 Step 2: Review the physical database model . . . . . . .. ... .. 16-4
16.2.21 Cdeculating1/Os . . . . . ... ... 16-4
16.2.2.2 Thingstowatchout for . ... ... ... .. ... ... ... 16-5
16.2.2.3 Questionstoaddress . . . . ... ... ... ... ... ... .. 16-7

16.3 Implementing thedesign . . . . . . .. . ... ... ... ... ... ... 16-9
16.3.1 Implementing your design with SQL . . . . . . . ... .. ... ... 16-10
16.3.2 Implementation steps . . . . . .. L 16-10
16.3.3 Implementing your design withnon-SQL . . . . . .. ... ... .. 16-14
16.3.4 Implementationsteps . . . . . ... ... 16-14

Chapter 16. Implementing Your Design 16-1



16-2 CA-IDMS Database Design



16.1 Overview

16.1 Overview

Once you have determined the space requirements of the database, you are prepared
for afinal design review and implementation. Y ou need to review the design to
ensure that the database will support the business transactions performed by users at
your corporation. You also need to ensure that applications that access the database
will execute efficiently.

This chapter shows you how to review both the logical and physical models for a
corporate database.

Chapter 16. Implementing Your Design 16-3



16.2 Reviewing the design

16.2 Reviewing the design

Reviewing the design for a corporate database involves performing the following pro-
cedures:

1. Reviewing the logical database model
2. Reviewing the physical database model

Follow the steps below to finalize the design for your corporate database.

16.2.1 Step 1. Review the logical database model

In the initial stages of logical design, you identified the business problem that users
hoped to solve by creating a database. After interviewing severa company employees,
you performed a thorough analysis of the business system, determining the processing
functions performed by the corporation and the flow of data during typical executions
of these functions.

An analysis of the system provided documentation of the types of data required by
corporate users to perform their day-to-day business tasks. With this documentation,
you created the entity-relationship diagram, which serves as a model of the corporate
enterprise.

During the final review of a database design, you should make sure that the physical
design does not compromise the logical model for the database.

16.2.2 Step 2: Review the physical database model

Earlier in the design process, you traced the flow of each business transaction through
the database. By tracing the flow of transactions, you tried to ensure that the system
would support all database processing. During the final review of a database design,
you need to trace the flow of business transactions again.

16.2.2.1 Calculating 1/Os

As you trace the flow of each business transaction, you should calculate the number of
input/output operations that will be performed. The I/O calculation for a business
transaction depends on several factors. These factors include the order in which enti-
ties are accessed, the location mode of each entity accessed, the types of indexes (if
any) used to access the data, and how the entities are clustered in the database.

See Chapter 12, “Refining the Database Design” on page 12-1 for instructions on how
to estimate the number of 1/Os for a transaction.

16-4 CA-IDMS Database Design



16.2 Reviewing the design

16.2.2.2 Things to watch out for

As you trace the flow of each transaction, you need to look for potential design flaws.
Here are some things to watch out for.

Nonclustered relationships: Relationships between two entities that are stored
with the CALC location mode sometimes degrade processing in applications that
retrieve all child entity occurrences. When two CALC entities are related, the system
must perform severa 1/O operations to retrieve the child entity occurrences partic-
ipating in the relationship, as shown below.

CALC-to-CALC relationships are particularly costly for long chained relationships
(those having many child occurrences). Note in the following diagram, the number of
pages accessed in order to retrieve all employees in a particular department.

DEPARTMENT
| |s6[cac
DEPTID  |U

ORG-DEMO-REGION
l DEPT-EMPLOYEE

NPO OA
ASC (EMP-LAST-NAME EMP-FIRST-NAME) DL

EMPLOYEE

| [116 [caic
EMP ID IR
EMP-DEMO-REGION

DEPT | _

EMP
420
NS EMP

643

Page 2172 Page 2173 Page 2174 Page 2175 Page 2176

Sorted relationships: Sorted relationships are efficient for some kinds of proc-
essing and not for others. When you design a relationship, you need to consider
whether the sorted order is appropriate for the type of processing that will be per-
formed.

Make sure that:

Chapter 16. Implementing Your Design 16-5



16.2 Reviewing the design

»  Every sorted relationship can be justified

n |f new key values are higher than existing values, the relationship is ordered in
descending sequence

n |f new key values are lower than existing values, the relationship is ordered in
ascending sequence

n |If the relationship is not clustered, it is indexed rather than chained (non-SQL
implementation)

For further information on sorted relationships, see Chapter 12, “Refining the Database
Design” on page 12-1.

Relationships crossing areas: When two entities related through a linked
relationship are stored in different database areas, certain utilities require that you
operate on both areas at the same time. Therefore, you may want to consider using an
unlinked relationship rather than a linked relationship.

Ineffective clustering: Processing performance may be affected by ineffective
clustering. Suppose that an entity participates as a child in two relationships. To
achieve optimal performance, the relationship through which an entity is most fre-
quently accessed should be chosen as the clustering relationship.

In the example below, retrieving all positions for a job will require fewer 1/Os than
retrieving al positions for an employee. This should be reviewed to ensure that it
reflects transaction frequencies.

JOB-POSITION | EMPOSITION EMP-POS
JOB Clustered via EMPLOYEE
JOB-POSITION

%@ .

\____———-—"

Large clusters: Large clusters of entity occurrences can also cause performance
problems. If the amount of space required to hold related entity occurrences is greater
than the page size for a database area, CALC or cluster overflow conditions may
occur.

16-6 CA-IDMS Database Design



16.2 Reviewing the design

Absence of PRIOR pointers in a non-SQL implementation: PRIOR pointers
should be excluded from a relationship only when all of the following conditions are
true:

® Child entity occurrences in a relationship are not erased or disconnected.
»  Child entity occurrences in a relationship participate in no other relationship.
8 Order is not LAST or PRIOR.

® The FIND/OBTAIN LAST or FIND/OBTAIN PRIOR functions are not used for
the relationship.

In al other circumstances, you should include PRIOR pointers in a relationship.

Absence of OWNER pointers in a non-SQL implementation: OWNER
pointers should be excluded from a relationship only when all of the following condi-
tions are true:

®  Parent entities in a relationship are not accessed from child entities.
» The FIND/OBTAIN OWNER DML function is not used for the relationship.

® Parent and child entities are normally stored all on one page.

In all other circumstances, you should include OWNER pointers in a relationship.
Every relationship must have NEXT pointers except indexed relationships, which must
have INDEX pointers.

16.2.2.3 Questions to address

Here are some questions that you should address before implementing a database:

. Will performance be acceptable for the five to ten most important trans-
actions? From a performance standpoint, the most important transactions are
those transactions that are executed most frequently.

» Do any clustered entities require rapid, random retrieval? If so, consider
placing indexes on these entities or, in a non-SQL implementation, adding addi-
tional linked relationships, as described below.

In the following example, the EMPLOY EE entity is stored clustered via the
DEPT-EMPLOYEE relationship. A new entity called EMP-NUM is created and
linked to the EMPLOY EE entity in a one-to-one relationship. Using the relation-
ship and CALC retrieval on EMP-NUM, an employee can be retrieved by
employee number using two 1/Os, even though it is neither a CALC nor an index

key.

Chapter 16. Implementing Your Design 16-7



16.2 Reviewing the design

DEPT-EMPLOYEE NUM-EMPLOYEE
DEPT EMPLOYEE EMP NUM

coWBe

L]
L —t [

"

R

\ L]
&Sl | SAEb>

Page 2172 Page 2930 Page 3111 Page 3240 Page 3951

» Does any entity that sparsely populates an area require processing of all
occurrences? If so, consider building an index for the entity.

®  Can extra relationships be added for more direct access? In some cases, you
may want to include additional relationships to enhance processing performance.
For example, you might want to define the DEPT-SKILL relationship to allow
retrieval of information from the DEPARTMENT and SKILL entities without
having to retrieve employees. The diagram below shows this use of an extra

relationship.
DEPARTMENT
DEPT-EMPLOYEE
DEPT-SKILL EMPLOYEE
EMP-SKILL
SKILL

16-8 CA-IDMS Database Design



16.3 Implementing the design

16.3 Implementing the design

Now that you have a physical database design, it is time to implement that design.
CA-IDMS/DB provides two methods for implementation:

» SQL DDL statements — Available only if your site has the SQL Option
Non-SQL DDL statements

| |
The data structure diagram you created is used as the basis for your implementation.
The diagram that follows shows a portion of the data structure, annotated with both the
SQL and non-SQL definition statements which apply to the components illustrated.
Complete SQL and non-SQL implementations of the Commonweather Corporation
database can be found in Appendix A, “SQL Database Implementation for the
Commonweather Corporation” on page A-1.

Non-SQL implementation

SQL implementation

ADD RECORD NAME IS EMPLOYEE EMPLOYEE CREATE TABLE EMPLOYEE
SHARE STRUCTURE OF RECORD entity name
EMPLOYEE VERSION 1 124 CALC
LOCATION MODE IS CALC length |focation mode
USING (EMP-ID) -
DUPLICATES ARE NOT ALLOWED EMP ID u IN SQLDEMO.EMP_DEMO_REGION;

WITHIN AREA EMP-DEMO-REGION

CALC-key or relationship

dup opt]

EMP-DEMO-REGION

area n.

CREATE UNIQUE CALC KEY

ON EMPLOYEE (EMP_ID);
ame

ADD SET EMP-EXPERTISE
ORDER IS SORTED
MODE IS CHAIN LINKED TO PRIOR
OWNER IS EMPLOYEE
WITHIN AREA EMP-DEMO-REGION
MEMBER IS EXPERTISE
WITHIN AREA EMP-DEMO-REGION
LINKED TO OWNER
MANDATORY AUTOMATIC
DESCENDING KEY IS (SKILL-CODE)
DUPLICATES NOT ALLOWED

EMP-EXPERTISE
FK (EMP ID)
DES (SKILL CODE) U

CREATE CONSTRAINT
EMP_EXPERTISE
EXPERTISE (EMP_ID)

REFERENCES
EMPLOYEE (EMP_ID}
LINKED CLUSTERED

ORDER BY (SKILL_CODE DESC)
UNIQUE;

ADD RECORD NAME IS EXPERTISE
SHARE STRUCTURE OF RECORD

EXPERTISE
entity name

CREATE TABLE EXPERTISE

EXPERTISE VERSICN 1
LOCATION MODE IS VIA
EMP-EXPERTISE SET

8
length

CLUSTERED
location mode

WITHIN AREA EMP-DEMO-REGION.

EMP-EXPERTISE
CALC-key or relationship

IN SQLDEMO.EMP_DEMO_REGION;

dup op

EMP-DEM
area na

0-REGION
me

Chapter 16. Implementing Your Design 16-9



16.3 Implementing the design

16.3.1 Implementing your design with SQL

You may choose to implement your design using SQL statements.

SQL terminology: The following table relates the terms used during the physical
design process with those used in an SQL implementation.

L ogical/physical design term

SQL implementation term

Entity Table
Entity occurrence Row
Data element Column
CALC location mode CALC

Clustered location mode

Clustered constraint

Relationship Constraint

Index Index

Unique Unique

Parent Referenced table
Child Referencing table

16.3.2 Implementation steps

1. Decide on naming conventions for:

Tables
Columns
Constraints

Indexes

2. Create the database.

3. Create the logical definition of your database using SQL DDL statements.

4. Copy the segment definition from the system dictionary into the application dic-
tionary in which you will define your tables.

»»> For more information on physical definition and creation, refer to CA-IDMS Data-
base Administration.

Steps 1 through 3 are described in more detail below.

You are now ready to define the tables and other logical components of your database.

16-10 CA-IDMS Database Design



16.3 Implementing the design

Naming conventions: Database tables and columns should have short, meaningful
names. Table names are up to 18 characters in length. Columns within tables can
have names of up to 32 characters. Underscores are usually used between tokens
within a name (for example, SKILL_LEVEL). Hyphens should be avoided since
names containing hyphens must be enclosed in double quotes when used in SQL
syntax.

Referential constraints are typically named by concatenating the names of the two
related tables. For example, the referential constraint between the EMPLOY EE table
and the DEPARTMENT table becomes DEPT_EMPLOYEE. This convention may
need to be modified, however, since constraint names can be no more than 18 charac-
ters.

Indexes must also be named. Names up to 18 characters are permitted.
Creating the database: A database is represented by a segment. To create a data-

base, you:

1. Define the segment in the system dictionary using CREATE SEGMENT, FILE,
and AREA statements

2. Include the segment definition in a DMCL and punch and link edit it to a load or
core image library

3. Allocate the operating system files defined in the segment and initialize them
using the FORMAT utility statement

Creating the logical database definition: The following examples illustrate how
the logical components of your design are translated into SQL DDL.

»> For complete DDL syntax, see CA-IDMS SQL Reference.

CREATE SCHEMA statement: A schema groups one or more tables together.
Typically al tables associated with a single database, or with a specific application
within a single database, are defined within one schema. The statement below defines
the schema, EMPSCHM.

CREATE SCHEMA EMPSCHM;  €--ce--ceeeoo Names the schema

CREATE TABLE statement: Each entity in your design is defined as an SQL
table. The definition of a table includes:

®  The name of the table

® A list of columns (data elements), including the data type of each, whether a
default has been designated, and whether or not nulls are alowed.

®  An optiona check constraint that limits the data that can be maintained in the
database for a particular column or columns.

1 The name of the area in which the data for the table is to be stored

Chapter 16. Implementing Your Design 16-11



16.3 Implementing the design

The following statement defines the table, SALARY GRADE.

CREATE TABLE EMPSCHM.SALARY_GRADE ~ <--------- Names the table
(SALARY_GRADE UNSIGNED NUMERIC(2,0) NOT NULL,
JOB_ID UNSIGNED NUMERIC(4,0) NOT NULL, Names the
HOURLY_RATE UNSIGNED DECIMAL(7,2) , | columns and
SALARY_AMOUNT UNSIGNED DECIMAL(10,2) , | assigns column
BONUS_PERCENT UNSIGNED DECIMAL(7,3) s characteristics
COMM_PERCENT UNSIGNED DECIMAL(7,3) s

OVERTIME_RATE UNSIGNED NUMERIC(5,2)

CHECK ( (HOURLY_RATE IS NOT NULL AND SALARY_AMOUNT IS NULL)
OR (HOURLY_RATE IS NULL AND SALARY_AMOUNT IS NOT NULL) ) )

IN SQLDEMO.EMP_DEMO_REGION; <---- Names the area qualified
with a segment name

Null values: SQL alows you to represent the absence of a column value in a partic-
ular row by assigning NULL to the column. This could happen because the value is
not known yet (such as a credit rating when a credit check has not yet been completed
for a new customer) or because it isn't applicable (such as phone number for an
employee with no phone). Null values may receive special treatment in certain SQL
DML statements. For example, the COUNT aggregate function doesn't include null
values in a particular column when counting the number of rows based on that
column.
CREATE INDEX statement: The definition of an index includes:

®  The name of the index

®  The name of the table and columns in the table on which the index is placed

® The area in which the index is to be stored

»  The UNIQUE and/or clustering specification

= Additional physical tuning options

The statement below defines the EMP_NAME_NDX index.

CREATE EMPSCHM.INDEX EMP_NAME_NDX D Names the index
ON EMPSCHM.EMPLOYEE (EMP_LAST NAME, EMP_FIRST NAME) <-- Names the columns
IN SQLDEMO.INDXAREA;  €---—----- Names the area qualified with

segment name

CREATE CONSTRAINT statement: In an SQL-defined database, relationships are
the vehicle for the enforcement of referential integrity. The system automatically
ensures that the foreign key columns of child rows are either null or match the primary
key of an existing parent row.

Linked and unlinked relationships are implemented as constraints. The definition of a
constraint includes:

®  The name of the constraint

16-12 CA-IDMS Database Design



16.3 Implementing the design

= The names of the two tables it relates
»  The referenced and referencing columns
® A specification of whether the constraint is linked or unlinked

n A specification of whether child entity occurrences are to be clustered based on
this relationship

= Additional tuning options
The statement below defines the EMP_EXPERTISE constraint.

CREATE CONSTRAINT EMPSCHM.EMP_EXPERTISE <«--- Names the referential constraint

EMPSCHM.EXPERTISE (EMP_ID) REFERENCES ] Names referenced and referencing
EMPSCHM.EMPLOYEE  (EMP_ID) tables and columns

LINKED CLUSTERED; <«----- Specifies type of referential constraint

Creating views: SQL-defined views can be used to:

»  Implement security because they can restrict access to a subset of the rows and
columns within a table

»  Provide a shorthand means of referring to complex SELECT statements
Below are some sample views that might be created for the Commonweather database:

CREATE VIEW EMPSCHM.SS_FORMAT

(EMP_ID, EMP_LAST NAME, EMP_FIRST NAME, SS1, SS2, SS3)

AS SELECT EMP_ID, EMP_LAST NAME, EMP_FIRST NAME,
SUBSTR(SS_NUMBER, 1, 3), SUBSTR(SS_NUMBER, 4, 2),
SUBSTR(SS_NUMBER, 6, 4)

FROM EMPSCHM.EMPLOYEE;

CREATE VIEW EMPSCHM.EMP_HOME_INFO
AS SELECT EMP_ID, EMP_LAST_NAME, EMP_FIRST_NAME, STREET,
CITY, STATE, ZIP_CODE, PHONE
FROM EMPSCHM.EMPLOYEE;

CREATE VIEW EMPSCHM.EMP_WORK_ INFO
AS SELECT EMP_ID, START_DATE, TERMINATION_DATE
FROM EMPSCHM.EMPLOYEE;

Table and view security: If CA-IDMS internal security is in effect, GRANT state-
ments must be used to alow others, besides the owner, to access the tables and views
within a schema. Every schema has an owner. The initial owner of a schema is the
user who created it. Ownership can be transferred to another individual using the
TRANSFER OWNERSHIP statement.

»» For more information on these statements, see CA-IDMS SQL Reference.

Chapter 16. Implementing Your Design 16-13



16.3 Implementing the design

16.3.3 Implementing your design with non-SQL
You may choose to implement your design using non-SQL statements.

Non-SQL terminology: The following table relates the terms used during the phys-
ical design process with those used in a non-SQL implementation.

L ogical/physical design term Non-SQL term
Entity Record type
Entity occurrence Record occurrence
Data element Field/element
CALC location mode CALC

Clustered location mode VIA

Relationship Set

Index Set

Unique Duplicates not allowed
Parent Owner

Child Member

16.3.4 Implementation steps

1. Decide on naming conventions for:
= Records
®  Elements
m Sets

2. Create the logical definition of your database using non-SQL schema and
subschema statements

3. Create the database
Each of these steps is described below.

Naming conventions: Database records and elements should have short, mean-
ingful names. Record names are up to 16 characters in length. Elements within
records can have names of up to 32 characters. Hyphens are usually used between
tokens within a name (for example, SKILL-NAME).

Sets are typically named by concatenating the names of the two related records. This
convention may need to be modified, however, since set names can be no more than
16 characters. For example, the set between the EMPLOY EE record and the
DEPARTMENT record remains DEPT-EMPLOY EE.

16-14 CA-IDMS Database Design



16.3 Implementing the design

Database definition: The following examples illustrate how the logical components
of your design are translated into non-SQL schema statements. These statements are
input to the schema compiler.

»»> For complete DDL syntax, see CA-IDMS Database Administration.

ADD SCHEMA statement: A schema represents a logical group of records. Typi-
cally al records associated with a single database are defined within one schema.

The statement below defines the EMPSCHM schema.

ADD
SCHEMA NAME IS EMPSCHM VERSION 1 ~ 4--------oe--o Names the schema

SCHEMA DESCRIPTION IS 'COMMONWEATHER DATABASE'

ASSIGN RECORD IDS FROM 1001 .

ADD AREA statement: Areas must be explicitly defined using the following state-
ment.

ADD

AREA NAME IS EMP-DEMO-REGION  <-------o---- Names the area
SUBAREA CALC-RANGE <---------—---- Subarea name

SPACE 50 FROM 1 <e-—--—-emmmo Subarea page range

ADD RECORD statement: The definition of a record includes:
®  The name of the record

»  The elements included within the record (information copied from or shared with
another record)

® Explicit or automatic specification of a record ID
Record IDs are internally-used numbers assigned to each record in a schema.
®  Location mode specification
= Root and fragment information for variable length records
» Optionally, database procedures to be called upon certain DML commands

®  The name of the area in which this record is to be stored

The statement below defines the record EMPLOY EE.

Chapter 16. Implementing Your Design 16-15



16.3 Implementing the design

ADD
RECORD NAME IS JOB  ®--—mmmmm e Names the record

SHARE STRUCTURE OF RECORD JOB VERSION 1 «---- Uses description of record that has
already been defined through IDD
RECORD ID IS AUTO D e Lt Instructs the system to assign
the record id
LOCATION MODE IS CALC USING (JOB-ID)
DUPLICATES ARE NOT ALLOWED

MINIMUM ROOT LENGTH IS 24 CHARACTERS ] Tells the system how to store
MINIMUM FRAGMENT LENGTH IS 296 CHARACTERS fragments of this variable-length record

CALL IDMSDCOM BEFORE STORE Tells the system to compress the record
CALL IDMSDCOM BEFORE MODIFY } during updates and decompress it for retrieval

CALL IDMSDCOM AFTER GET processing
WITHIN AREA ORG-DEMO-REGION <---------ouo--—- Specifies the area name
USING CALC-RANGE D R e and subarea

ADD SET statement: To implement a linked relationship, you need to define a set.

The definition of a set includes:
= The name of the set
= The names of the owner and member records
»  The linkage characteristics (index or chain) and pointer options
»  Membership rules

® The set order

The statement below defines the EMP-COVERAGE set.

ADD
SET NAME IS EMP-COVERAGE
ORDER IS FIRST ----mmmmmmcceeeeee Tells the system to insert each new record
immediately after the owner record in the set
MODE IS CHAIN LINKED TO PRIOR <------ Tells the system that this is a chained set,

not an indexed set and prior pointers are used
OWNER IS EMPLOYEE
NEXT DBKEY POSITION IS AUTO ] Causes the schema compiler to assign pointer
PRIOR DBKEY POSITION IS AUTO positions in the owner record automatically

MEMBER IS HEALCOV

NEXT DBKEY POSITION IS AUTO Causes the schema compiler to assign
PRIOR DBKEY POSITION IS AUTO pointer positions in the member record
LINKED TO OWNER automatically
OWNER DBKEY POSITION IS AUTO
MANDATORY AUTOMATIC <----------- Tells the system the membership option
for the set

16-16 CA-IDMS Database Design



16.3 Implementing the design

Subschema definition: Each subschema description for a database identifies the
schema components that are available to a particular application program. Before a
program containing logical record facility or navigational DML can be compiled, you
must define at least one subschema.

To define a subschema, you submit the following types of statements to the subschema
compiler:

® SUBSCHEMA statements

» AREA statements

» RECORD statements

m SET statements

® LOGICAL RECORD statements

» PATH-GROUP statements
A sample subschema listing for the Commonweather database is shown in

Appendix B, “Non-SQL Database Implementation for the Commonweather
Corporation” on page B-1.

»» For further information on defining subschemas, see CA-IDMS Database
Administration. For further information on defining a logical record subschema, see
the CA-IDMS Logical Record Facility.

Creating the database: A database is represented by a segment. To create a data-
base, you:

1. Define the segment in the system dictionary using SEGMENT, FILE, and AREA
statements

2. Include the segment definition in a DMCL and punch and linkedit the DMCL to a
load or core image library

3. Allocate the operating system files defined in the segment and initialize them
using the FORMAT utility statement.

You are now ready to load data into your database.

Chapter 16. Implementing Your Design 16-17



16.3 Implementing the design

16-18 CA-IDMS Database Design



Appendix A. SQL Database Implementation for the
Commonweather Corporation

A.1l Logical database definition listing for the Commonweather database . . . . A-3
A.11 View definitions . . . .. ... ... ... A-12

Appendix A. SQL Database Implementation for the Commonweather Corporation A-1



A-2 CA-IDMS Database Design



A.1 Logical database definition listing for the Commonweather database

A.1 Logical database definition listing for the
Commonweather database

Below is alisting for the SQL definition of the Commonweather Corporation database
for the design shown.

JOB-TITLE-NDX DEPARTMENT OFFICE SKILL-NAME-NDX
ASC (JOB TITLE} U | Ts8 Jcac | [s2]cac ASC (SKILL NAME) U
—= DEPT ID [U OFFICE CODE | U T
EEET: ORG-DEMO-REGION ORG-DEMO-REGION [76 [cAc
oD Tu|  prsenen Qsrons  [SGone 10
ORG-DEMQ-REGION ASC (EMP LAST NAME <7 V4 ASC (EMP LAST NAME ORG-DEMO-REGION
EMP FIRST NAME EMP FIRST NAME
CTE | werem
| DES (SKILL LEVEL)
EMPOSITION E}"(A?I_EEJINILPICI))?”ION LNAME-NDX
| [39 JoLusTEREQ DES (START DATE) U \ ' ASC (EMP LAST NAME)
EMP EMPOSITION | EMP FIRST NAME)
P TENOTEGON EMPLOYEE w| EXPERTISE
[ [resfeac EMP-EXPERTISE [ | 16]cLUSTERED
EMP 1D u FK (EMP ID) EMP-EXPERTISE u
PROJECT I DES (SKILL CODE) U I
EMP-DEMO-REGION EMP-DEMO-REGION
| I7s]cac EMP-PROJECT I
PROJECT CODE | U FK (EMP ID)

MANAGES-REPORTS-TO

EMP-DEMQC-REGION I

FK (SUPR EMP ID)
PROJECT-WORKER EMP-WORKER I
FK (PROJECT CODE) FK (EMP ID}

WORKER | emp-coverace INSURANGE PLAN

[ T 2cfcLusTeREd FK (EMP D) [ 46 cac
PROJECT-WORKER | | PLAN CODE [T

I COV-NDX INS-DEMO-REGICN
Y ASC (PLAIN CODE COVERAGE TYPE

. EMP 1Dy U
COVERAGE-NHG COVERAGE-DC
FK (PLAN GODE) COVERAGE FK (PLAN CODE
EMP D) | |so]cac EMP ID)
EMP-ID
INS-DEMOQ-REGION
NHC-NDX COVERAGE-HC DC-NDX
] ASC (NON-HOSP CLAIM ID) U FK (PLAN CODE ASC (DENTAL CLAIM D) U
EMP 1D}
NON-HQSPITAL CLAIM DENTAL CLAIM
| |04 |CLUSTERED] HG-NDX [ T1s2 FLUSTERED)

[COVERAGE-NHC I AS%&E&SF&'{A& COVERAGE-DG I

INS-DEMO-REGION SOSPTAL CLAT INS-DEMO-REGION
NHCLAIM-PROC DCLAIM-PROC
FK (NON-HOSP CLAIM ID) [ | 310 PLUSTERED FK (DENTAL GLAIM ID)
ASC (PROCEDURE NUMBER COVERAGE-HC | ASC (PROCEDURE NUMBER

NON-HOSP GLAIM ID) U NS DEMOREGION DENTAL CLAIM IDy U
L /
NON-HOSP PROCEDURE DENTAL PROGEDURE
| |85 [CLUSTERED | ]ss JcLustERED
NHCLAIM-PROC | DCLAIM-PROC |
INS-DEMO-REGION INS-DEMO-REGION

Appendix A. SQL Database Implementation for the Commonweather Corporation A-3



A.1 Logical database definition listing for the Commonweather database

Schema statement
CREATE SCHEMA EMPSCHM;

SET SESSION CURRENT SCHEMA EMPSCHM;

Table statements
CREATE TABLE COVERAGE

(PLAN_CODE CHAR(03) NOT NULL,
EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,
SELECTION_DATE DATE NOT NULL WITH DEFAULT,
TERMINATION_DATE DATE )
COVERAGE-TYPE CHAR(0O1) NOT NULL,

IN SQLDEMO.INS_DEMO_REGION;

CREATE TABLE DENTAL_CLAIM

DENTIST ZIP FIRST FIVE CHAR(05)

DENTIST ZIP_LAST FOUR  CHAR(04)

DENTIST LICENSE_NUMBER UNSIGNED NUMERIC(6,0)
IN SQLDEMO.INS_DEMO_REGION;

(CLAIM_DATE DATE NOT NULL,
PATIENT FIRST NAME CHAR(10) ,
PATIENT LAST_NAME CHAR(15) ,
PATIENT BIRTH_DATE DATE ,
PATIENT SEX CHAR(01) ,
RELATION TO_EMPLOYEE  CHAR(10) ,
EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,
PLAN_CODE CHAR(03) ,
DENTIST FIRST NAME CHAR(10) ,
DENTIST_LAST NAME CHAR(15) ,
DENTIST_STREET CHAR(20) ,
DENTIST_CITY CHAR(15) ,
DENTIST STATE CHAR(2) ,

)

CREATE TABLE DENTAL_PROCEDURE

(EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,
PLAN_CODE CHAR(03) NOT NULL,
SERVICE_DATE DATE NOT NULL,
TOOTH_NUMBER UNSIGNED NUMERIC(2,0) s
PROCEDURE_CODE UNSIGNED NUMERIC(4,0) NOT NULL,
FEE DECIMAL(9,2) s
DESCRIPTION VARCHAR (60) )

IN SQLDEMO.INS_DEMO_REGION;

CREATE TABLE DEPARTMENT

(DEPT_ID UNSIGNED NUMERIC(4,0) NOT NULL,
DEPT_HEAD_ID UNSIGNED NUMERIC(4,0) ,
DEPT_NAME CHAR (40) NOT NULL)

IN SQLDEMO.ORG_DEMO_REGION;

A-4 CA-IDMS Database Design



A.1 Logical database definition listing for the Commonweather database

CREATE TABLE EMPLOYEE

(EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,
EMP_FIRST_NAME CHAR(20) NOT NULL,
EMP_LAST_NAME CHAR(20) NOT NULL,
DEPT_ID UNSIGNED NUMERIC(4,0) NOT NULL,
OFFICE_CODE UNSIGNED NUMERIC(4,0) NOT NULL,
STREET CHAR(40) s
CITY CHAR(20) NOT NULL,
STATE CHAR(02) NOT NULL,
ZIP_FIRST_FIVE CHAR(05) NOT NULL,
ZIP_LAST_FOUR CHAR(04) NOT NULL,
PHONE CHAR(10) s
STATUS CHAR(01) NOT NULL,

SS_NUMBER UNSIGNED NUMERIC(9,0) NOT NULL,
START_DATE DATE NOT NULL,
TERMINATION_DATE DATE s
BIRTH_DATE DATE

CHECK ( ( EMP_ID <= 8999 ) AND (STATUS IN ('O1', '62', '03', '04', '05'5 ) ) )
IN SQLDEMO.EMP_DEMO_REGION;

CREATE TABLE EMPOSITION

(EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,
JOBID UNSIGNED NUMERIC(4,0) NOT NULL,
START DATE DATE NOT NULL,
FINISH_DATE DATE ,
SALARY_GRADE UNSIGNED NUMERIC(2,0) )
IN SQLDEMO.EMP_DEMO_REGION;
CREATE TABLE HOSPITAL_CLAIM
(CLAIM_DATE DATE NOT NULL,
PATIENT FIRST NAME CHAR(10) ,
PATIENT LAST NAME CHAR(15) ,
PATIENT BIRTH_DATE DATE ,
PATIENT SEX CHAR(01) ,
RELATION_TO EMPLOYEE  CHAR(10) ,
EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,
PLAN_CODE CHAR(03) ,
HOSPITAL_NAME CHAR(25) ,
HOSPITAL_STREET CHAR(20) ,
HOSPITAL_CITY CHAR(15) ,
HOSPITAL_STATE CHAR(2) ,
HOSPITAL ZIP_FIRST_FIVE CHAR(05) ,
HOSPITAL_ZIP_LAST FOUR CHAR(04) ,
ADMIT DATE DATE ,
DISCHARGE_DATE DATE ,
DIAGNOSIS CHAR(120) ,
WARD_DAYS UNSIGNED NUMERIC(5,0) ,
WARD RATE DECIMAL(9,2) ,
WARD_TOTAL DECIMAL(9,2) ,

Appendix A. SQL Database Implementation for the Commonweather Corporation A-5



A.1 Logical database definition listing for the Commonweather database

SEMI_DAYS
SEMI_RATE
SEMI_TOTAL
DELIVERY_COST
ANESTHESTA_COST
LAB_COST

IN SQLDEMO.INS_DEMO_REGION;

CREATE TABLE INSURANCE_PLAN

IN SQLDEMO.INS DEMO_REGION;

(PLAN_CODE
COMP_NAME
STREET
CITY
STATE
ZIP_FIRST FIVE
ZIP_LAST_FOUR
PHONE
GROUP_NUMBER
DEDUCT
MAX_LIFE_BENEFIT
FAMILY_COST
DEP_COST

CREATE TABLE JOB

IN SQLDEMO.ORG_DEMO_REGION;

(JOB_ID
JOB_TITLE
MIN_RATE
MAX_RATE
SALARY_IND
NUM_OF_POSITIONS
NUM_OPEN
EFF_DATE
JOB_DESC_LINE_1
JOB_DESC_LINE_2
REQUIREMENTS
HOURLY_RATE
SALARY_AMOUNT
BONUS_PERCENT
COMM_PERCENT
OVERTIME_RATE

CREATE TABLE EXPERTISE

(EMP_ID
SKILL_CODE
SKILL_LEVEL
EXP_DATE

IN PROJSEG.EMP_DEMO_REGION;

UNSIGNED NUMERIC(5,0)
DECIMAL(9,2)
DECIMAL(9,2)
DECIMAL(9,2)
DECIMAL(9,2)
DECIMAL(9,2)

CHAR(03)
CHAR (40)
CHAR(20)
CHAR(15)
CHAR(02)
CHAR(05)
CHAR (04)
CHAR(10)
UNSIGNED NUMERIC(6,0)
UNSIGNED DECIMAL(9,2)
UNSIGNED DECIMAL(9,2)
UNSIGNED DECIMAL(9,2)
UNSIGNED DECIMAL(9,2)

UNSIGNED NUMERIC(4,0)
CHAR(20)

UNSIGNED DECIMAL(10,2)
UNSIGNED DECIMAL(10,2)
CHAR(01)

UNSIGNED DECIMAL(3,0)
UNSIGNED DECIMAL(3,0)
DATE

VARCHAR (60)

VARCHAR (60)

VARCHAR (120)

UNSIGNED DECIMAL(7,2)
UNSIGNED DECIMAL(10,2)
UNSIGNED DECIMAL(7,3)
UNSIGNED DECIMAL(7,3)
UNSIGNED DECIMAL(5,2)

UNSIGNED NUMERIC(4,0)
UNSIGNED NUMERIC(4,0)
CHAR(02)

DATE

CHECK ( SKILL_LEVEL IN ('01', '@2', '03', '04', '05') ) )

~—uv v v o w

NOT NULL,
NOT NULL,

NOT NULL.
NOT NULL.

NOT NULL.
NOT NULL.

~—v .

NOT NULL,
NOT NULL,

~—uv v L L B B U BV B ou u o w w

NOT NULL,
NOT NULL,

A-6 CA-IDMS Database Design



A.1 Logical database definition listing for the Commonweather database

CREATE TABLE NON_HOSP_CLAIM

(CLAIM DATE

PATIENT FIRST NAME
PATIENT_LAST NAME
PATIENT BIRTH_DATE
PATIENT_SEX
RELATION_TO_EMPLOYEE
EMP_ID

PLAN_CODE
PHYS_FIRST NAME
PHYS_LAST_NAME

PHYS STREET

PHYS CITE
PHYS_STATE
PHYS_ZIP_FIRST FIVE
PHYS_ZIP_LAST FOUR
PHYSTCIAN_ID
DIAGNOSIS

CREATE TABLE NON_HOSP_PROCEDURE

(EMP_ID
PLAN_CODE
SERVICE_DATE
PROCEDURE_CODE
FEE
DESCRIPTION

DATE

CHAR(10)

CHAR(15)

DATE

CHAR(01)

CHAR(10)

UNSIGNED NUMERIC(4,0)
CHAR(03)

CHAR(10)

CHAR(15)

CHAR(20)

CHAR(15)

CHAR(2)

CHAR(05)

CHAR(04)

UNSIGNED NUMERIC(6,0)
VARCHAR (120)

IN SQLDEMO.INS_DEMO_REGION;

UNSIGNED NUMERIC(4,0)
CHAR(03)

DATE

UNSIGNED NUMERIC(4,0)
DECIMAL(9,2)

VARCHAR (60)

IN SQLDEMO.INS_DEMO_REGION;

CREATE TABLE OFFICE

(OFFICE_CODE
STREET

CITY

STATE
ZIP_FIRST_FIVE
ZIP_LAST FOUR
SPEED_DIAL
AREA_CODE
PHONE_1
PHONE_2
PHONE_3

IN SQLDEMO.ORG_DEMO_REGION;
CREATE TABLE PROJECT

(PROJECT_CODE
DESCRIPTION
EST_BEGIN_DATE
ACT_BEGIN_DATE

UNSIGNED NUMERIC(4,0)
CHAR(20)
CHAR(15)
CHAR(2)
CHAR(05)
CHAR(04)
CHAR(03)
CHAR(03)
UNSIGNED NUMERIC(7,0)
UNSIGNED NUMERIC(7,0)
UNSIGNED NUMERIC(7,0)

UNSIGNED NUMERIC(4,0)
CHAR (40)

DATE

DATE

NOT NULL,

NOT NULL,

e v v v v v v o w ow

NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,

)

NOT NULL,

~u v v v v v o ow w

NOT NULL,

Appendix A. SQL Database Implementation for the Commonweather Corporation A-7



A.1 Logical database definition listing for the Commonweather database

EST_END_DATE DATE ,
ACT_END_DATE DATE .
LDR_EMP_ID UNSIGNED NUMERIC(4,0) )

IN SQLDEMO.EMP_DEMO_REGION;

CREATE TABLE SKILL

(SKILL_CODE UNSIGNED NUMERIC(4,0) NOT NULL,
SKILL_NAME CHAR(20) NOT NULL,
SKILL_DESC VARCHAR(60) )

IN PROJSEG.ORG_DEMO_REGION;

CREATE TABLE WORKER

(PROJECT_CODE UNSIGNED NUMERIC(4,0) NOT NULL,
EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,
BEGIN_DATE DATE s
END_DATE DATE )

IN SQLDEMO.EMP_DEMO_REGION;

CALC key statements
CREATE UNIQUE CALC KEY ON DEPARTMENT (DEPT _ID);

CREATE UNIQUE CALC KEY ON EMPLOYEE (EMP_ID);

CREATE UNIQUE CALC KEY ON INSURANCE_PLAN (PLAN_CODE);
CREATE UNIQUE CALC KEY ON JOB (JOB_ID);

CREATE UNIQUE CALC KEY ON SKILL (SKILL CODE);

CREATE UNIQUE CALC KEY ON PROJECT (PROJECT CODE);

CREATE UNIQUE CALC KEY ON OFFICE (OFFICE_CODE);

Index statements

CREATE UNIQUE INDEX SKILL NAME_NDX ON SKILL(SKILL_NAME);
CREATE UNIQUE INDEX JOB_TITLE NDX ON JOB(JOB TITLE);

CREATE UNIQUE INDEX COV_NDX ON COVERAGE (PLAN_CODE, COVERAGE_TYPE, EMP_ID);

CREATE INDEX LNAME_NDX ON EMPLOYEE(EMP_LAST NAME, EMP_FIRST_NAME)
IN SQLDEMO.INDXAREA;

A-8 CA-IDMS Database Design



A.1 Logical database definition listing for the Commonweather database

Constraint statements

CREATE CONSTRAINT EMP_COVERAGE
COVERAGE (EMP_ID) REFERENCES
EMPLOYEE  (EMP_ID)

UNLINKED CLUSTERED;

CREATE CONSTRAINT DEPT_EMPLOYEE
EMPLOYEE ~ (DEPT_ID) REFERENCES
DEPARTMENT (DEPT_ID)
LINKED INDEX
ORDER BY (EMP_LNAME, EMP_FNAME);

CREATE CONSTRAINT MANAGES_REPORTS_TO
EMPLOYEE  (SUPR_EMP_ID) ~REFERENCES
EMPLOYEE  (EMP_ID)

LINKED INDEX;

CREATE CONSTRAINT SKILL_EXPERTISE
EXPERTISE (SKILL_CODE) REFERENCES
SKILL (SKILL_CODE)
LINKED INDEX
ORDER BY (SKILL_LEVEL DESC);

CREATE CONSTRAINT EMP_EMPOSITION
EMPOSITION (EMP_ID) REFERENCES
EMPLOYEE  (EMP_ID)
LINKED CLUSTERED
ORDER BY (START_DATE DESC) UNIQUE;

CREATE CONSTRAINT JOB_EMPOSITION
EMPOSITION (JOB_ID) REFERENCES
JOB (J0B_ID)
LINKED INDEX;

CREATE CONSTRAINT OFFICE_EMPLOYEE
EMPLOYEE (OFFICE_CODE) REFERENCES
OFFICE (OFFICE_CODE)
LINKED INDEX
ORDER BY (EMP_LNAME, EMP_FNAME);

CREATE CONSTRAINT EMP_EXPERTISE
EXPERTISE (EMP_ID) REFERENCES
EMPLOYEE  (EMP_ID)
LINKED CLUSTERED
ORDER BY (SKILL CODE DESC) UNIQUE;

Appendix A. SQL Database Implementation for the Commonweather Corporation A-9



A.1 Logical database definition listing for the Commonweather database

CREATE

CREATE

CREATE

CREATE

CREATE

CREATE

CREATE

CREATE

CONSTRAINT EMP_PROJECT
EMPLOYEE ~ (LDR_EMP_ID) REFERENCES
PROJECT (EMP_ID)
LINKED INDEX;

CONSTRAINT PROJECT_WORKER
WORKER ~ (PROJECT CODE) REFERENCES
PROJECT (PROJECT_CODE)
LINKED CLUSTERED;

CONSTRAINT EMP_WORKER
WORKER ~ (EMP_ID) REFERENCES
EMPLOYEE (EMP_ID)
LINKED INDEX;

CONSTRAINT COVERAGE_NHC
NON_HOSP_CLAIM (EMP_ID, PLAN_CODE) REFERENCES
COVERAGE (EMP_ID, PLAN_CODE)

LINKED CLUSTERED;

CONSTRAINT COVERAGE_HC
HOSPITAL CLAIM (EMP_ID, PLAN_CODE) REFERENCES
COVERAGE (EMP_ID, PLAN_CODE)

LINKED CLUSTERED;

CONSTRAINT COVERAGE_DC
DENTAL_CLAIM (EMP_ID, PLAN_CODE) REFERENCES
COVERAGE (EMP_ID, PLAN_CODE)

LINKED CLUSTERED;

CONSTRAINT DCLAIM_PROC
DENTAL_PROCEDURE  (DENTAL_CLAIM_ID) REFERENCES
DENTAL_CLAIM (DENTAL_CLAIM_ID)

LINKED CLUSTERED;

CONSTRAINT NHCLAIM_PROC
NON_HOSP_PROCEDURE ~ (NON_HOSP_CLAIM_ID) REFERENCES
NON_HOSP_CLAIM (NON_HOSP_CLAIM_ID)

LINKED CLUSTERED;

A-10 CA-IDMS Database Design



A.1 Logical database definition listing for the Commonweather database

Remove default indexes

ALTER TABLE COVERAGE
DROP DEFAULT INDEX;

ALTER TABLE DEPARTMENT
DROP DEFAULT INDEX;

ALTER TABLE EMPLOYEE
DROP DEFAULT INDEX;

ALTER TABLE INSURANCE_PLAN
DROP DEFAULT INDEX;

ALTER TABLE EMPOSITION
DROP DEFAULT INDEX;

ALTER TABLE EXPERTISE
DROP DEFAULT INDEX;

ALTER TABLE SALARY_GRADE
DROP DEFAULT INDEX;

ALTER TABLE PROJECT
DROP DEFAULT INDEX;

ALTER TABLE WORKER
DROP DEFAULT INDEX;

ALTER TABLE PHONE
DROP DEFAULT INDEX;

ALTER TABLE DENTAL_PROCEDURE
DROP DEFAULT INDEX;

ALTER TABLE NON_HOSP_PROCEDURE
DROP DEFAULT INDEX;

ALTER TABLE OFFICE
DROP DEFAULT INDEX;

ALTER TABLE SKILL
DROP DEFAULT INDEX;

ALTER TABLE DENTAL_CLAIM
DROP DEFAULT INDEX;

ALTER TABLE HOSPITAL_CLAIM
DROP DEFAULT INDEX;

ALTER TABLE NON_HOSP_CLAIM
DROP DEFAULT INDEX;

Appendix A. SQL Database Implementation for the Commonweather Corporation A-11



A.1 Logical database definition listing for the Commonweather database

A.1.1 View definitions

SQL-defined views allow an application program to see just a portion of the database.
A view can be used to introduce security.

Below are some sample views that might be created for the Commonweather database:

CREATE VIEW EMPSCHM.SS_FORMAT

(EMP_ID, EMP_LAST NAME, EMP_FIRST NAME, SS1, SS2, SS3)

AS SELECT EMP_ID, EMP_LAST NAME, EMP_FIRST NAME,
SUBSTR(SS_NUMBER, 1, 3), SUBSTR(SS_NUMBER, 4, 2),
SUBSTR(SS_NUMBER. 6, 4)

FROM EMPSCHM.EMPLOYEE;

CREATE VIEW EMPSCHM.EMP_HOME_INFO
AS SELECT EMP_ID, EMP_LAST_NAME, EMP_FIRST_NAME, STREET,
CITY, STATE, ZIP_CODE, PHONE
FROM EMPSCHM.EMPLOYEE;

CREATE VIEW EMPSCHM.EMP_WORK_INFO
AS SELECT EMP_ID, START_DATE, TERMINATION_DATE
FROM EMPSCHM.EMPLOYEE;

A-12 CA-IDMS Database Design



Appendix B. Non-SQL Database Implementation for
the Commonweather Corporation

B.1 Logica database definition listing for the Commonweather database . . . . B-3
B.1.1 Subschemadefinition . .. .. .. ... .. ... ... .. ... ..., B-12

Appendix B. Non-SQL Database Implementation for the Commonweather Corporation B-1



B-2 CA-IDMS Database Design



B.1 Logical database definition listing for the Commonweather database

B.1 Logical database definition listing for the

Commonweather database

JOB-TITLE-NDX
ASC (JOB TITLE) U

Y

JOB

Jc so7] cac

Below is the complete non-SQL defined schema listing for the Commonweather Cor-

poration database design shown.

Note: Once the system has assigned an ID number to each record, you should indi-

cate this number on the data structure diagram.

DEFPARTMENT

OFFICE

| |53 |cac

| |62 ]cac

DEPT ID

u OFFICE CODE

| u

ORG-DEMO-BREGION

QORG-DEMQ-REGION

QFFICE-EMPLOYEE
10 OA
ASC (EMP LAST NAME

EMP FIRST NAME) DL

LNAME-NDX
] ASC (EMP LAST NAME)

EMP FIRST NAME}

SKILL-NAME-NDX
ASC (SKILL NAME) U

SKILL

| |76 ]cac
SKILL CODE [T
ORG-DEMO-REGION

SKILL-EXPERTISE
10 MA
DES (SKILL LEVEL)

EXPERTISE

NPO MA FIRST

WORKER

| |12 fcrusTeEREd

PROJECT WORKER I

EMP-DEMO-REGION

EI\F{IP—EXPERTISE

JOB 1D [ %EI(’)T—EMPLOYEE
10 OA
ORG-DEMQO-REGION ASC (EMP LAST NAME v \V4
EMP FIRST NAME) DL
JOB-EMPOSITION
,NPO OM NEXT
EMP-EMPGSITION
EMPGSITION EME-EMI
|31 JCLUSTEREL] DES (START DATE) U \
EMP-EMPGSITION |
EMPLOYEE
EMP-DEMO-REGION
FMP-PROJECT [ [1e]cac
NPO QA NEXT u
PROJECT T
[cT7s]cac - .
PROJECT CODE REPQRTS TO MANAGES
OJECT €0 [y IC OM NPO NEXT
EMP-DEMG-REGION ASC (SUPR ASC (WRKR
EMP ID) DF. EMP 1D}
PROJECT-WORKER ) U
FNPO OM NEXT Lo vionieo

STRUCTURE

| |6 |crusTtered

NPO MA
DES (SKILL CODE) U

[ I8 Jorustered
EMP-EXPERTISE | U
EMP-DEMO-REGION

INSURANCE PLAN

|c [146] calc

NON-HOSPITAL CLAIM

Iv T1oosfcLusTERED

COVERAGE-CLAIMS |

INS-DEMQ-REGICN

HOSPITAL CLAIM

[v] 292 fLusTERED

COVEHAGE-CLAIMSI

INS-DEMO-REGION

MANAGES | PLAN CODE [u
EMP-DEMO-REGION INS-DEMO-REGION
EMP-COVERAGE
j 10 M
COVERAGE ASC {PLAN CODE COVERAGE TYPE) U
| |46 [cLUSTERED
EMP-COVERAGE |
INS-DEMO-REGION
COVERAGE-CLAIMS
(J\ NP MA LAST
’ Y CLUSTERED

DENTAL CLAIM

| v] 930 |

COVERAGE-CLAIMS I

INS-DEMO-REGION

Appendix B. Non-SQL Database Implementation for the Commonweather Corporation B-3



B.1 Logical database definition listing for the Commonweather database

Schema statement

ADD

SCHEMA NAME IS EMPSCHM VERSION IS 1
SCHEMA DESCRIPTION IS 'EMPLOYEE DEMO DATABASE'
ASSIGN RECORD IDS FROM 1001
PUBLIC ACCESS IS ALLOWED FOR ALL

Area statements
ADD
AREA NAME IS EMP-DEMO-REGION
ADD
AREA NAME IS ORG-DEMO-REGION
ADD
AREA NAME IS INS-DEMO-REGION

Record statements

ADD

RECORD NAME IS COVERAGE
SHARE STRUCTURE OF RECORD COVERAGE VERSION 1
LOCATION MODE IS VIA EMP-COVERAGE SET
WITHIN AREA INS-DEMO-REGION.

ADD

RECORD NAME IS DENTAL-CLAIM
SHARE STRUCTURE OF RECORD DENTAL-CLAIM VERSION 1
LOCATION MODE IS VIA COVERAGE-CLAIMS SET
MINIMUM ROOT LENGTH IS 132 CHARACTERS
MINIMUM FRAGMENT LENGTH IS 930 CHARACTERS
WITHIN AREA INS-DEMO-REGION

ADD
RECORD NAME IS DEPARTMENT
SHARE STRUCTURE OF RECORD DEPARTMENT VERSION 1
LOCATION MODE IS CALC USING ( DEPT-ID ) DUPLICATES ARE
NOT ALLOWED
WITHIN AREA ORG-DEMO-REGION

ADD

RECORD NAME IS EMPLOYEE
SHARE STRUCTURE OF RECORD EMPLOYEE VERSION 1
LOCATION MODE IS CALC USING ( EMP-ID ) DUPLICATES ARE NOT ALLOWED
WITHIN AREA EMP-DEMO-REGION

ADD

RECORD NAME IS EMPOSITION
SHARE STRUCTURE OF RECORD EMPOSITION VERSION 1
LOCATION MODE IS VIA EMP-EMPOSITION SET
WITHIN AREA EMP-DEMO-REGION

ADD

RECORD NAME IS EXPERTISE
SHARE STRUCTURE OF RECORD EXPERTISE VERSION 1
LOCATION MODE IS VIA EMP-EXPERTISE SET
WITHIN AREA EMP-DEMO-REGION

B-4 CA-IDMS Database Design



B.1 Logical database definition listing for the Commonweather database

ADD

RECORD NAME IS HOSPITAL-CLAIM
SHARE STRUCTURE OF RECORD HOSPITAL-CLAIM VERSION 1
LOCATION MODE IS VIA COVERAGE-CLAIMS SET
WITHIN AREA INS-DEMO-REGION

ADD
RECORD NAME IS INSURANCE-PLAN
SHARE STRUCTURE OF RECORD INSURANCE-PLAN VERSION 1
LOCATION MODE IS CALC USING ( PLAN-CODE ) DUPLICATES ARE
NOT ALLOWED
CALL IDMSCOMP BEFORE STORE
CALL IDMSCOMP BEFORE MODIFY
CALL IDMSDCOM AFTER GET
WITHIN AREA INS-DEMO-REGION

ADD
RECORD NAME IS JOB
SHARE STRUCTURE OF RECORD JOB VERSION 1
LOCATION MODE IS CALC USING ( JOB-ID ) DUPLICATES ARE NOT ALLOWED
MINIMUM ROOT LENGTH IS 24 CHARACTERS
MINIMUM FRAGMENT LENGTH IS 296 CHARACTERS
CALL IDMSCOMP BEFORE STORE
CALL IDMSCOMP BEFORE MODIFY
CALL IDMSDCOM AFTER GET
WITHIN AREA ORG-DEMO-REGION

ADD
RECORD NAME IS NON-HOSP-CLAIM
SHARE STRUCTURE OF RECORD NON-HOSP-CLAIM VERSION 1
LOCATION MODE IS VIA COVERAGE-CLAIMS SET
MINIMUM ROOT LENGTH IS 248 CHARACTERS
MINIMUM FRAGMENT LENGTH IS 1008 CHARACTERS
WITHIN AREA INS-DEMO-REGION

ADD
RECORD NAME IS OFFICE
SHARE STRUCTURE OF RECORD OFFICE VERSION 1
LOCATION MODE IS CALC USING ( OFFICE-CODE ) DUPLICATES ARE

Appendix B. Non-SQL Database Implementation for the Commonweather Corporation B-5



B.1 Logical database definition listing for the Commonweather database

NOT ALLOWED
WITHIN AREA ORG-DEMO-REGION

ADD
RECORD NAME IS SKILL
SHARE STRUCTURE OF RECORD SKILL VERSION 1
LOCATION MODE IS CALC USING ( SKILL-CODE ) DUPLICATES ARE
NOT ALLOWED
WITHIN AREA ORG-DEMO-REGION

ADD

RECORD NAME IS STRUCTURE
SHARE STRUCTURE OF RECORD STRUCTURE VERSION 1
LOCATION MODE IS VIA MANAGES SET
WITHIN AREA EMP-DEMO-REGION

ADD
RECORD NAME IS PROJECT
SHARE STRUCTURE OF RECORD PROJECT VERSION 1
LOCATION MODE IS CALC USING ( PROJECT-CODE ) DUPLICATES ARE
NOT ALLOWED
WITHIN AREA EMP-DEMO-REGION

ADD

RECORD NAME IS WORKER
SHARE STRUCTURE OF RECORD WORKER VERSION 1
LOCATION MODE IS VIA PROJECT-WORKER SET
WITHIN AREA EMP-DEMO-REGION

B-6 CA-IDMS Database Design



B.1 Logical database definition listing for the Commonweather database

Set statements

ADD
SET NAME IS COVERAGE-CLAIMS
ORDER IS LAST
MODE IS CHAIN LINKED TO PRIOR
OWNER IS COVERAGE
MEMBER IS HOSPITAL-CLAIM
MANDATORY AUTOMATIC
MEMBER IS NON-HOSP-CLAIM
PRIOR DBKEY POSITION IS AUTO
MANDATORY AUTOMATIC
MEMBER IS DENTAL-CLAIM
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
MANDATORY AUTOMATIC

ADD
SET NAME IS DEPT-EMPLOYEE
ORDER IS SORTED
MODE IS INDEX BLOCK CONTAINS 30 KEYS
OWNER IS DEPARTMENT
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
MEMBER IS EMPLOYEE
INDEX DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
LINKED TO OWNER
OWNER DBKEY POSITION IS AUTO
OPTIONAL AUTOMATIC
ASCENDING KEY IS ( EMP-LAST-NAME EMP-FIRST-NAME )
COMPRESSED
DUPLICATES ARE LAST

ADD
SET NAME IS EMP-COVERAGE
ORDER IS SORTED
MODE IS INDEX BLOCK CONTAINS 30 KEYS
OWNER IS EMPLOYEE
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
MEMBER IS COVERAGE
INDEX DBKEY POSITION IS AUTO
LINKED TO OWNER
OWNER DBKEY POSITION IS AUTO
MANDATORY AUTOMATIC
ASCENDING KEY IS ( PLAN-CODE COVERAGE-TYPE )
DUPLICATES NOT ALLOWED

ADD
SET NAME IS EMP-EMPOSITION
ORDER IS SORTED
MODE IS CHAIN LINKED TO PRIOR
OWNER IS EMPLOYEE
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
MEMBER IS EMPOSITION
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
LINKED TO OWNER
OWNER DBKEY POSITION IS AUTO
MANDATORY AUTOMATIC

Appendix B. Non-SQL Database Implementation for the Commonweather Corporation B-7



B.1 Logical database definition listing for the Commonweather database

DESCENDING KEY IS ( START-DATE )
DUPLICATES NOT ALLOWED

ADD
SET NAME IS EMP-EXPERTISE
ORDER IS SORTED
MODE IS CHAIN LINKED TO PRIOR
OWNER IS EMPLOYEE
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
MEMBER IS EXPERTISE
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
LINKED TO OWNER
OWNER DBKEY POSITION IS AUTO
MANDATORY AUTOMATIC
DESCENDING KEY IS ( SKILL-CODE )
DUPLICATES ARE NOT ALLOWED

ADD
SET NAME IS LNAME-NDX
ORDER IS SORTED
MODE IS INDEX BLOCK CONTAINS 40 KEYS
OWNER IS SYSTEM
MEMBER IS EMPLOYEE
INDEX DBKEY POSITION IS AUTO
OPTIONAL AUTOMATIC
ASCENDING KEY IS ( EMP-LAST-NAME EMP-FIRST-NAME )
COMPRESSED
DUPLICATES ARE LAST

B-8 CA-IDMS Database Design



B.1 Logical database definition listing for the Commonweather database

ADD
SET NAME IS JOB-EMPOSITION
ORDER IS NEXT
MODE IS CHAIN LINKED TO PRIOR
OWNER IS JOB
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
MEMBER IS EMPOSITION
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
LINKED TO OWNER
OWNER DBKEY POSITION IS AUTO
OPTIONAL MANUAL

ADD
SET NAME IS JOB-TITLE-NDX
ORDER IS SORTED
MODE IS INDEX BLOCK CONTAINS 30 KEYS
OWNER IS SYSTEM
MEMBER IS JOB
INDEX DBKEY POSITION IS AUTO
OPTIONAL AUTOMATIC
ASCENDING KEY IS ( JOB-TITLE ) UNCOMPRESSED
DUPLICATES ARE NOT ALLOWED

ADD
SET NAME IS MANAGES
ORDER IS SORTED
MODE IS CHAIN LINKED TO PRIOR
OWNER IS EMPLOYEE
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
MEMBER IS STRUCTURE
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
LINKED TO OWNER
OWNER DBKEY POSITION IS AUTO
MANDATORY AUTOMATIC
ASCENDING KEY IS ( WKRK-EMP-ID ) UNCOMPRESSED
DUPLICATES ARE NOT ALLOWED

ADD
SET NAME IS OFFICE-EMPLOYEE
ORDER IS SORTED
MODE IS INDEX BLOCK CONTAINS 30 KEYS
OWNER IS OFFICE
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO

Appendix B. Non-SQL Database Implementation for the Commonweather Corporation B-9



B.1 Logical database definition listing for the Commonweather database

MEMBER IS EMPLOYEE
INDEX DBKEY POSITION IS AUTO
LINKED TO OWNER
OWNER DBKEY POSITION IS AUTO
OPTIONAL AUTOMATIC
ASCENDING KEY IS ( EMP-LAST-NAME EMP-FIRST-NAME )
COMPRESSED
DUPLICATES ARE LAST

ADD
SET NAME IS REPORTS-TO
ORDER IS SORTED
MODE IS INDEX BLOCK CONTAINS 30 KEYS
OWNER IS EMPLOYEE
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
MEMBER IS STRUCTURE
INDEX DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
LINKED TO OWNER
OWNER DBKEY POSITION IS AUTO
OPTIONAL MANUAL
ASCENDING KEY IS ( SUPR-EMP-ID ) UNCOMPRESSED
DUPLICATES ARE FIRST

ADD
SET NAME IS EMP-PROJECT
ORDER IS NEXT
MODE IS CHAIN LINKED TO PRIOR
OWNER IS EMPLOYEE
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
MEMBER IS PROJECT
INDEX DBKEY POSITION IS AUTO
LINKED TO OWNER
OWNER DBKEY POSITION IS AUTO
OPTIONAL AUTOMATIC

ADD
SET NAME IS PROJECT-WORKER
ORDER IS NEXT
MODE IS CHAIN LINKED TO PRIOR
OWNER IS PROJECT
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
MEMBER IS WORKER
INDEX DBKEY POSITION IS AUTO
LINKED TO OWNER
OWNER DBKEY POSITION IS AUTO
OPTIONAL MANUAL

B-10 CA-IDMS Database Design



B.1 Logical database definition listing for the Commonweather database

ADD
SET NAME IS EMP-WORKER
ORDER IS FIRST
MODE IS CHAIN LINKED TO PRIOR
OWNER IS EMPLOYEE
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
MEMBER IS WORKER
INDEX DBKEY POSITION IS AUTO
LINKED TO OWNER
OWNER DBKEY POSITION IS AUTO
MANDATORY AUTOMATIC

ADD
SET NAME IS SKILL-EXPERTISE
ORDER IS SORTED
MODE IS INDEX BLOCK CONTAINS 30 KEYS
OWNER IS SKILL
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
MEMBER IS EXPERTISE
INDEX DBKEY POSITION IS AUTO
LINKED TO OWNER
OWNER DBKEY POSITION IS AUTO
MANDATORY AUTOMATIC
DESCENDING KEY IS ( SKILL-LEVEL ) UNCOMPRESSED
DUPLICATES ARE FIRST

Appendix B. Non-SQL Database Implementation for the Commonweather Corporation B-11



B.1 Logical database definition listing for the Commonweather database

B.1.1 Subschema definition

Sample subschema listing for the Commonweather database: A sample
subschema listing for the Commonweather database is shown below.

»» For further information on defining subschemas, see CA-IDMS Database
Administration.

ADD

SUBSCHEMA NAME IS A200SS03 OF SCHEMA NAME IS EMPSCHM VERSION IS 1
PUBLIC ACCESS IS ALLOWED FOR ALL
USAGE IS MIXED

ADD
AREA NAME IS EMP-DEMO-REGION

ADD

AREA NAME IS ORG-DEMO-REGION
PROTECTED UPDATE IS NOT ALLOWED
EXCLUSIVE UPDATE IS NOT ALLOWED

ADD
RECORD NAME IS DEPARTMENT

ADD
RECORD NAME IS EMPLOYEE

ADD
RECORD NAME IS OFFICE

ADD
SET NAME IS DEPT-EMPLOYEE

ADD
SET NAME IS OFFICE-EMPLOYEE

B-12 CA-IDMS Database Design



Index

A

access arm contention  15-31
access path  7-3
anomaly
deletion 6-4
insertion 6-4
update 6-4
application performance
cluster size 15-9—15-10
ensuring optimal performance 12-3
application performance requirements 10-3—10-13
how often each entity will be accessed 10-13
number of entity occurrences 10-10—10-11
performance requirements for transactions 10-5
prioritizing transactions 10-6
transaction entry point 10-9
transaction frequency 10-7
area contention  14-4—14-5
minimizing 14-7
arealocks 14-4
areasize 15-9—15-15
size of acluster 15-9—15-10
areas 8-6, 15-5
allocating space for indexes 15-16—15-29
assignment of entitiesto 13-4, 13-38
contention 14-4—14-5
database segmentation 13-5
locks 14-4
optimal page size 15-10—15-13
page size 15-10—15-13
placing areas in files 15-30—15-32
size 15-9—15-15
assignment of entities to areas 13-4, 13-38
atomic primary key 6-9
attributes  5-3—5-13
characteristics  5-13
grouping 5-6—5-8
identifying attributes for a relationship  5-12—5-13
identifying attributes of an entity 5-5—5-11
identifying unique keys 5-8—5-9
naming conventions 5-4
normalization 6-3—6-31
primary keys 5-9—5-10

B

backup and recovery 13-4

buffer pool size 15-12

business analysis 3-3—3-14
business rules  3-13
defining specific business functions 3-6—3-9
genera business functions 3-5
listing the data elements  3-10—3-12
reviewing the results  3-14

business functions  3-3, 3-10

C

CA-IDMS Presspack  13-8
CALC

duplicates option 13-27—13-28
CALC duplicates options 13-3
CALC location mode 11-4—11-5

See also randomization
CALC overflow 15-6—15-7
central version 14-4
chained relationship  13-12—13-14
cluster

overflow 15-7—15-8

size 159—15-10
cluster overflow 15-7—15-8
cluster size 15-9—15-10
clustering 11-5—11-7

direct storage 13-24—13-25

overflow 15-7—15-8
clustering with direct location mode 13-24
collapsing relationships  12-4, 12-9—12-10
collating sequence

natural  13-30

standard 13-30
compound keys 6-11
compression

See also data compression

index keys 13-3, 13-17
connect options  13-34
constraints

unique 12-14
contention 12-3

for a sorted index 14-9

for areas 14-4—14-5

for entities 14-5—14-6

for OOAK entities 14-7

Index X-1



contention (continued)
minimizing contention 14-9
minimizing contention among
transactions 14-3—14-9
sources 14-4—14-6

CPU time 12-3

cushion 15-16

D

data clustering
See clustering
data compression  13-3, 13-8—13-10
CA-IDMS Presspack  13-8
IDMSCOMP 13-9
IDMSDCOM  13-9
user-written procedures 13-9
data elements 3-10—3-12, 9-3
business functions  3-10
data flow diagrams (DFDs) 3-10

hierarchy plus input-process-output (HIPO) 3-11

interviews 3-10

data entities  4-3
See also entities

data flow diagrams (DFDs) 3-10

data models
logical 1-3
physica 1-3

data normalization
See normalization

data redundancy
planned 12-10

data relationships 4-3
See also relationships

data structure diagram 8-4
creating a preliminary diagram  9-3—9-10
entity lengths 9-8—9-9
identifying 9-3
identifying relationship entities 9-6
relationships  9-8
representing entities  9-3—9-6
representing indexes 11-11—11-12
representing location modes  11-11
representing relationships  9-7—9-8
specifying foreign keys 9-7—9-10

data tables 2-5—2-8

database
allocating space for indexes 15-16—15-29
areasize 159—15-15
areas 155
assignment of entities to areas 13-4—13-38

database (continued)
calculating the size of an index 15-20
database key format 15-33
implementation 16-9—16-17
index size 15-29
non-SQL implementation  16-14—16-17
optimal page size 15-10—15-13
page groups 15-33—15-34
page size 15-10—15-13
placing areas in files 15-30—15-32
reviewing the design  16-3
segmentation  13-5
segmented by logical key 13-6—13-7
size of acluster 15-9—15-10
sizing 15-3—15-34
sizing considerations for compressed and variable-
length entities 15-4
sizing considerations for variable-length entities 15-5
SQL implementation  16-10—16-13
database access 10-8
database design
evaluating the database model  12-3
evaluating the physical model 12-3
genera guidelines 1-3
implementation 16-9—16-17
non-SQL implementation  16-14—16-17, B-3—B-12
non-SQL terminology 16-14
review 16-3—16-4
SQL implementation 16-10—16-13, A-3—A-12
SQL terminology 16-10
database entry point  10-9
database implementation, non-SQL  16-14—16-17,
B-3—B-12
schema B-3—B-12
subschema  B-12
database implementation, SQL  16-10—16-13,
A-3—A-12
constraints  A-8—A-10
indexes A-8
schema A-3
tables A-4—A-8
views 16-13, A-12
database key 8-7
format 15-33
database procedures 13-3, 13-27
database requirements  10-3—10-13
database size
See sizing the database
db-key 12-13
See also database key

X-2 CA-IDMS Database Design



deadlock 14-6
deletion anomaly 6-4
device blocking 15-10
DFDs

See data flow diagrams
direct clustering 13-24
direct location mode

See location modes
direct retrieval  12-13
disconnect options  13-33
displacement of clustered entities 13-38
duplicates option

See CALC duplicates options
duplicates options

CALC 133

index 13-37

relationships  13-30—13-31

E

E-R diagram
See entity-relationship diagram
elements 9-6
entities 4-3—4-12, 13-3
assignment to areas 13-38
database segmentation 13-5
determining location mode 11-8—11-10

identifying attributes of an entity 5-5—5-11

lengths 9-8—9-9

minimizing entity contention 14-7—14-9

normalization 6-3—6-31
numbers 10-10—10-11
placement in areas 13-4
placement, non-SQL  13-38
primary key for an entity 5-9—5-10
relationships among entities 4-8—4-12
variable-length  13-3, 13-25—13-26
weak entities 5-11
entity occurrence contention 14-5—14-6
entity occurrences 8-6
entity-relationship diagram 6-9
entry point  7-3, 10-9
evaluating the database model  12-3
evaluating the physical model 12-3
explicit record locks 14-5

F

files
placing areas in files 15-30—15-32

first norma form 6-5—6-6, 6-9—6-11
repeating elements  12-9
foreign keys 5-5, 9-7—9-10
removing 13-36
fragmentation 15-4
minimum fragment 15-4
minimum root 15-4
root and fragment size 15-4

G

generic key 12-13

H

hierarchy plus input-process-output (HIPO) 3-11

HIPO
See hierarchy plus input-process-output

1/0s 12-3
counting I/0s  16-4

estimating 1/Os for transactions  12-5—12-8

sample exercises in counting 12-6—12-8

IDMSCOMP 139
IDMSDCOM  13-9

implementing the database design  16-9—16-17
logical database definition, non-SQL  16-15—16-17
logical database definition, SQL  16-11—16-13

naming conventions, non-SQL  16-14
naming conventions, SQL  16-11
non-SQL  16-14—16-17, B-3—B-12
non-SQL terminology 16-14
schema 16-15—16-17
SQL 16-10—16-13, A-3—A-12
SQL terminology 16-10
subschema 16-17

implicit record locks 14-5

index
order 13-37

index pointer 13-32

index size 15-20—15-29

index structure 15-16—15-20

indexed relationship  13-12—13-14

indexes 11-6—11-12, 12-4, 12-13—12-17

allocating space for indexes 15-16—15-29

collating sequence 13-37
compression 13-3, 13-17
duplicates option  13-37
index structure 15-16—15-20
levels 15-19

Index X-3



indexes (continued)
linked 13-36
membership options 13-38
nonsorted  13-37
placement 13-38
representing indexes 11-12
size 15-20—15-29
sort options  13-37
sorted 15-16
SQL considerations 12-16
tuning options  13-3, 13-36—13-38
unlinked 13-36
unsorted 13-37, 15-17
input/output performance
See 1/Os
insertion anomaly 6-4

J

job scheduling  14-9

K

keys
atomic primary  6-9
compound 6-11
foreign 5-5, 9-7—9-10
generic  12-13
logical 13-6—13-7
primary 5-5, 5-9
secondary 5-5
symbolic  11-5, 12-13
unique 5-5

L

levelsin a sorted index 15-20

linkage
See relationships

linked indexes 13-36

linked relationships  13-3
See also relationships

local mode 14-4

location modes 11-3, 11-4
assigning to entities 11-3—11-15
CALC 114
CALC overflow 15-6—15-7
cluster overflow 15-7—15-8
clustering 11-5—11-7
direct 13-3
direct storage 13-24—13-25
overflow conditions 15-6—15-8

location modes (continued)
randomization 11-4—11-5
representing  11-11

locks
area 14-4
record 14-5

logical design
benefits  2-3
generd introduction 2-3—2-8
overview of the process 2-8
review 16-3—16-4
validating the design  7-3—7-4

logical design review 16-4

M

mandatory automatic membership 13-34
mandatory manual membership 13-34
membership options for indexes 13-38
membership options for linked
relationships  13-33—13-36
connect options  13-34
disconnect options  13-33
mandatory automatic membership  13-34
mandatory manual membership 13-34
optional automatic membership 13-34
optional manual membership 13-34
minimum fragment 15-4
minimum root 15-4
multimember relationships
See relationships

N

naming conventions for data attributes 5-4

nested structure 9-5

next pointer 13-32

non-key data 5-5

normalization 6-3—6-31
first normal form 6-5—6-6, 6-9—6-11
how to normalize data 6-9—6-15
normal forms 6-5—6-8
normalized data for the Commonweather

Corporation 6-16—6-31

second normal form 6-6, 6-11—6-12
third normal form 6-7—6-8, 6-13—6-15
why normalize data 6-4

null values 5-13, 9-8, 16-12

X-4 CA-IDMS Database Design



O

optional automatic membership 13-34

optional manual membership 13-34

ordered retrieval  12-14

overflow conditions 15-6—15-8, 15-9
CALC overflow 15-6—15-7
cluster overflow 15-7—15-8

owner pointer 13-32

P

page groups 15-33—15-34
page header and footer 15-13
page reserve  15-5, 15-12
page size 15-10—15-13
optimal size 15-10
selecting optimal size 15-13
pages 8-6
performance
ensuring optimal performance 12-3
performance requirements 10-3—10-13
how often each entity will be accessed 10-13
number of entity occurrences 10-10—10-11
performance requirements for transactions 10-5
prioritizing transactions 10-6
transaction entry point 10-9
transaction frequency 10-7
physical arealocks 14-4
physical design 16-4
caculating I/0s  16-4
clustering 11-5—11-7
database structures 8-6—8-7
genera introduction to concepts 8-3
indexes 11-6—11-12
location modes 11-4
process 8-5
randomization 11-4—11-5
review 16-3—16-4
physical design review 16-4
physical sequential processing 12-14
physical tuning options 13-3—13-43
placement of entitiesin areas 13-3
pointers
See also relationships
index 13-32
next 13-32
owner 13-32
prior 13-32
primary keys 5-5, 5-9—5-10

prior pointer 13-32
prioritizing transactions 10-6
processing mode 10-5

R

randomization 11-4—11-5

readying areas 14-9

record locks 14-5

redundancy
planned 12-10

relating entities  9-7—9-8

relationship
identifying attributes for a relationship  5-12

relationship entities 9-6

relationship linkage
next pointer 13-32
owner pointer 13-32
prior pointer 13-32

relationships  4-3—4-12, 9-3
between user-defined entities 13-24
carrying non-key data 9-4
collapsing 12-4, 12-9—12-10
collating sequence 13-30
duplicates option 13-30—13-31
foreign keys 9-7, 9-10
foreign keys, removing 13-36
genera guidelines for identifying 4-11
graphic conventions for representation 4-8—4-11
identifying 9-3—9-6
identifying attributes for a relationship 5-13
linkage 13-12—13-14, 13-32—13-33
linked 13-3, 13-11—13-16
many-to-many  9-4—9-7
membership options 13-33—13-36
multimember 13-3, 13-20—13-24
natural collating sequence 13-30
non-sorted order 13-28—13-30
non-SQL considerations 13-12
one-to-one 9-7
order 13-28
representing  9-7—9-8
representing as entities  9-3—9-6
self-referencing  9-5—9-6
sorted 13-15—13-16
sorted order 13-15, 13-31
standard collating sequence 13-30
tuning options  13-3, 13-24
unique constraints, enforcing 13-15
unlinked 13-3, 13-11
unnecessary 12-12

Index X-5



relationships (continued)
unsorted  13-15
repeating elements  12-9
repeating groups 6-5—6-7, 6-9, 6-11
requirements for a physical database 10-3—10-13
access requirements  10-8
how often each entity will be accessed 10-13
number of entity occurrences 10-10—10-11

performance requirements for transactions 10-5

prioritizing transactions 10-6
transaction entry point 10-9
transaction frequency 10-7

retrieval
direct 12-13
ordered 12-14

physical sequential 12-14
unsorted 12-14
reviewing the database design  16-3—16-4

S

scheduling of batch update jobs 14-9
schema 16-15—16-17, B-3—B-12
second normal form 6-6, 6-11—6-12
secondary keys 5-5
seek time 15-31
segmentation  13-3, 13-5
by logical key 13-6—13-7
groups of entities 13-5
segmenting entities to reduce contention 14-8
self-referencing relationships  9-5—9-6
foreign keys 9-8
null values 9-8
self-referencing structure  5-12
shared update mode 14-9
sizing the database 15-3—15-34
allocating space for indexes 15-16—15-29
areasize 15-9—15-15
areas 155
calculating the size of an index 15-20
cluster 15-9—15-10
considerations 15-4
database key format  15-33
index size 15-29
index structure 15-16—15-20
optimal page size 15-10—15-13
page groups 15-33—15-34
page size 15-10—15-13
placing areas in files 15-30—15-32
placing entities 13-38
placing indexes 13-38

sizing the database (continued)

sizing considerations for compressed and variable-

length entities 15-4

sizing considerations for variable-length entities 15-5

space management page 15-5
SMP
See space management page
sorted index 15-16
sorted relationships
See relationships
space for indexes 15-16—15-29
index structure 15-16—15-20
space management  12-3, 15-5
space management page 15-5
SR7 entity 15-16
SR8 entity  15-16
store operations  13-18
structures of the physical database 8-6—8-7
clustering 11-5—11-7
indexes 11-6—11-12
location modes 11-4
overflow conditions 15-6—15-8
subschema 16-17, B-12
symbolic key 11-5, 12-13
synonyms 5-4
systems analysis 3-3—3-14
business rules  3-13
defining specific business functions 3-6—3-9
genera business functions 3-5
listing the data elements  3-10—3-12
reviewing the results  3-14

T
third normal form 6-7—6-8, 6-13—6-15
transactions 3-6
ensuring optimal performance 12-3
estimating 1/0s  12-5—12-8
minimizing contention 14-3—14-9
tuning options, physical 13-3—13-43

U

unique constraints  12-14
unique keys 5-5, 5-8—5-9
unlinked indexes 13-36
unlinked relationships  13-3

See also relationships
unsorted index 15-17
unsorted relationships

See relationships

X-6 CA-IDMS Database Design



unsorted retrieval  12-14
update anomalies 6-4

V
validating the logical design 7-3—7-4
value 5-3
variable-length entities  13-3
VIA location mode
See clustering
views 16-13, A-12

W

wait state 14-4
weak entities 5-11

Index X-7






	CA-IDMS Database Design 
	Contents 
	How to Use This Manual 
	What this manual is about 
	Who should use this manual 
	How to proceed 
	Related documentation 

	Chapter 1. General Guidelines 
	1.1 Overview 
	1.2 Design implementation 

	Chapter 2. Introduction to Logical Design 
	2.1 Overview 
	2.2 Determining the user's data needs 
	2.3 Determining the corporation's data needs 
	2.4 Overview of the logical design process 

	Chapter 3. Analyzing the Business System 
	3.1 Overview 
	3.2 Step 1: Defining general business functions 
	3.3 Step 2: Defining specific business functions 
	3.4 Step 3: Listing the data elements 
	3.5 Step 4: Identifying the business rules 
	3.6 Step 5: Reviewing the results of analysis 

	Chapter 4. Identifying Entities and Relationships 
	4.1 Overview 
	4.2 Identifying data entities 
	4.3 Identifying relationships among entities 
	4.3.1 Types of data relationships 
	4.3.2 General guidelines for identifying relationships 


	Chapter 5. Identifying Attributes 
	5.1 Overview 
	5.2 Establishing naming conventions for the attributes 
	5.3 Identifying the attributes of each entity 
	5.3.1 Grouping the attributes 
	5.3.2 Identifying unique keys 
	5.3.3 Establishing primary keys 
	5.3.4 Identifying weak entities 

	5.4 Identifying the attributes for each relationship type 
	5.5 Identifying attribute characteristics 

	Chapter 6. Normalizing the Data 
	6.1 Overview 
	6.2 Why normalize data 
	6.3 Normal forms of data 
	6.3.1 First normal form 
	6.3.2 Second normal form 
	6.3.3 Third normal form 

	6.4 How to normalize data 
	6.4.1 Listing data in first normal form 
	6.4.2 Listing data in second normal form 
	6.4.3 Listing data in third normal form 

	6.5 Normalized data for the Commonweather Corporation 

	Chapter 7. Validating the Logical Design 
	7.1 Overview 

	Chapter 8. Introduction to Physical Design 
	8.1 Overview 
	8.2 Data structure diagram 
	8.3 Steps in the physical database design process 
	8.4 Physical database structures 
	8.5 SQL and non- SQL definitions 

	Chapter 9. Creating a Preliminary Data Structure Diagram 
	9.1 Developing a data structure diagram 
	9.1.1 Representing entities 
	9.1.1.1 Representing relationships as entities 

	9.1.2 Representing relationships between entities 
	9.1.3 Estimating entity lengths 

	9.2 Preliminary data structure diagram for Commonweather Corporation 

	Chapter 10. Identifying Application Performance Requirements 
	10.1 Overview 
	10.2 Establishing performance requirements for transactions 
	10.3 Prioritizing transactions 
	10.4 Determining how often transactions will be executed 
	10.5 Identifying access requirements 
	10.6 Determining the database entry point and access key for each transaction 
	10.7 Projecting growth patterns 
	10.8 Determining the number of entities in each relationship 
	10.9 Determining how often each entity will be accessed 

	Chapter 11. Determining How an Entity Should Be Stored 
	11.1 Overview 
	11.2 Location modes 
	11.2.1 Randomization 
	11.2.2 Clustering 

	11.3 Guidelines for determining how an entity should be stored 
	11.3.1 Is this entity both a parent and a child? 
	11.3.1.1 Is there optimal relationship clustering for this entity? 

	11.3.2 Is this a parent entity but not a child entity? 
	11.3.3 Is this a child entity but not a parent entity? 
	11.3.4 Is generic retrieval required and is the entity relatively static? 

	11.4 Graphic conventions 
	11.4.1 Conventions for specifying location mode 
	11.4.2 Conventions for representing indexes 

	11.5 Location modes for entities in the Commonweather database 
	11.5.1 Revised data structure diagram for the Commonweather Corporation 


	Chapter 12. Refining the Database Design 
	12.1 Evaluating the database design 
	12.2 Refinement options 
	12.3 Estimating I/ Os for transactions 
	12.3.1 Sample exercise #1: Estimating I/ Os for a retrieval transaction 
	12.3.2 Sample exercise #2: Estimating I/ Os for an update transaction 

	12.4 Eliminating unnecessary entities 
	12.4.1 Collapsing relationships 
	12.4.2 Introducing redundancy 

	12.5 Eliminating unnecessary relationships 
	12.6 Adding indexes 
	12.7 Refined data structure diagram for Commonweather Corporation 

	Chapter 13. Choosing Physical Tuning Options 
	13.1 Overview 
	13.2 Placement of entities in areas 
	13.2.1 Segmentation of databases 
	13.2.1.1 Segmenting by groups of entities 
	13.2.1.2 Segmenting by logical key 


	13.3 Data compression 
	13.4 Relationship tuning options 
	13.4.1 Linked and unlinked relationships 
	13.4.2 Linked relationship tuning options 
	13.4.2.1 Type of linkage 
	13.4.2.2 Sorted and unsorted relationships 


	13.5 Index key compression 
	13.6 Non- SQL tuning options 
	13.6.1 Multimember relationships 
	13.6.2 Direct location mode 
	13.6.3 Variable- length entities 
	13.6.4 Database procedures 
	13.6.5 CALC duplicates option 
	13.6.6 Relationship tuning options 
	13.6.6.1 Nonsorted order 
	13.6.6.2 Additional sort options 
	13.6.6.3 Linkage 
	13.6.6.4 Membership options 
	13.6.6.5 Removing foreign keys 

	13.6.7 Index tuning options 
	13.6.7.1 Unlinked versus linked indexes 
	13.6.7.2 Additional sort options for indexes 
	13.6.7.3 Nonsorted indexes 
	13.6.7.4 Index membership options 

	13.6.8 Non- SQL entity and index placement 

	13.7 Physical tuning options for Commonweather Corporation 
	13.7.1 Refined Commonweather Corporation database design (for SQL implementation) 
	13.7.2 Refined Commonweather Corporation database design (for non- SQL implementation) 


	Chapter 14. Minimizing Contention Among Transactions 
	14.1 Overview 
	14.2 Sources of database contention 
	14.2.1 Area contention 
	14.2.2 Entity occurrence contention 

	14.3 Minimizing contention 
	14.3.1 Minimizing contention for entities and areas 


	Chapter 15. Determining the Size of the Database 
	15.1 Overview 
	15.2 General database sizing considerations 
	15.2.1 Sizing considerations for compressed and variable- length entities 
	15.2.2 Space management 
	15.2.3 Overflow conditions 
	15.2.3.1 CALC overflow 
	15.2.3.2 Cluster overflow 


	15.3 Calculating the size of an area 
	15.3.1 Step 1: Calculating the size of each cluster 
	15.3.2 Step 2: Determining the page size 
	15.3.3 Step 3: Calculating the number of pages in the area 

	15.4 Allocating space for indexes 
	15.4.1 Index structure 
	15.4.2 Calculating the size of the index 
	15.4.2.1 Calculating the size of an index sorted on a symbolic key 
	15.4.2.2 Calculating the size of an index sorted on db- key 
	15.4.2.3 Calculating the size of an unsorted index 


	15.5 Placing areas in files 
	15.6 Sizing a megabase 
	15.6.1 Varying the database key format 
	15.6.2 Assigning segments to page groups 


	Chapter 16. Implementing Your Design 
	16.1 Overview 
	16.2 Reviewing the design 
	16.2.1 Step 1: Review the logical database model 
	16.2.2 Step 2: Review the physical database model 
	16.2.2.1 Calculating I/ Os 
	16.2.2.2 Things to watch out for 
	16.2.2.3 Questions to address 


	16.3 Implementing the design 
	16.3.1 Implementing your design with SQL 
	16.3.2 Implementation steps 
	16.3.3 Implementing your design with non- SQL 
	16.3.4 Implementation steps 


	Appendix A. SQL Database Implementation for the Commonweather Corporation 
	A. 1 Logical database definition listing for the Commonweather database 
	A. 1.1 View definitions 


	Appendix B. Non- SQL Database Implementation for the Commonweather Corporation 
	B. 1 Logical database definition listing for the Commonweather database 
	B. 1.1 Subschema definition 


	Index 
	A 
	B 
	C 
	D 
	E 
	F 
	G 
	H 
	I 
	J 
	K 
	L 
	M 
	N 
	O 
	P 
	R 
	S 
	T 
	U 
	V 
	W 



